We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs.
View Article and Find Full Text PDFIn the present work, the standard monometallic localized surface plasmon resonance (LSPR) biosensing sensitivity is highly improved when using a new system based on glass substrates modified with high-temperature annealed gold/silver bimetallic nanoparticles (Au/Ag bimetallic NPs) coated with polydopamine films before biomolecule specific immobilization. Thus, different zones of bimetallic NPs are spatially created onto a glass support thanks to a commercial transmission electron microscopy (TEM) grid marker in combination with two sequential evaporations of continuous films of gold (4 nm) and silver (2 nm) and followed by annealing at 500 °C for 8 h. By using the scanning electron microscopy (SEM), it is found that annealed Au/Ag bimetallic NPs have uniform size and shape distribution that exhibited a sharper well-defined LSPR resonant peak when compared with that of monometallic Au NPs and thereby contributing to an improved sensitivity in LSPR biosensor application.
View Article and Find Full Text PDFA commercial TEM grid was used as a mask for the creation of extremely well-organized gold micro-/nano-structures on a glass substrate via a high temperature annealing process at 500 °C. The structured substrate was (bio)functionalized and used for the high throughput LSPR immunosensing of different concentrations of a model protein named bovine serum albumin.
View Article and Find Full Text PDFHerein are reported two new protocols to obtain different zones of localized surface plasmon resonance (LSPR) gold nanostructures on single glass substrate by using a vacuum evaporation technique followed by a high-temperature annealing (550 °C). The thickness of the gold film, considered as the essential parameter to determine specific LSPR properties, is successfully modulated. In the first protocol, a metal mask is integrated onto the glass substrate during vacuum evaporation to vary the gold film thickness by a "shadowing effect", while in the second protocol several evaporation cycles (up to four cycles) at predefined areas onto the single substrate are performed.
View Article and Find Full Text PDFWe report on the emission of hybrid nanosources composed of gold nanoparticles coupled with quantum dots. The emission relies on energy transfer from the quantum dots to gold nanoparticles which could be de-excited through radiative plasmon relaxation. The dependence of the emission efficiency is studied systematically as a function of the size of gold nanoparticles and interdistance between gold nanoparticles and quantum dots.
View Article and Find Full Text PDF