Background: Deep phenotyping of Parkinson's disease (PD) is essential to investigate this fastest-growing neurodegenerative disorder. Since 2015, over 800 individuals with PD and atypical parkinsonism along with more than 800 control subjects have been recruited in the frame of the observational, monocentric, nation-wide, longitudinal-prospective Luxembourg Parkinson's study.
Objective: To profile the baseline dataset and to explore risk factors, comorbidities and clinical profiles associated with PD, atypical parkinsonism and controls.
Connecting chemical exposures over a lifetime to complex chronic diseases with multifactorial causes such as neurodegenerative diseases is an immense challenge requiring a long-term, interdisciplinary approach. Rapid developments in analytical and data technologies, such as non-target high resolution mass spectrometry (NT-HR-MS), have opened up new possibilities to accomplish this, inconceivable 20 years ago. While NT-HR-MS is being applied to increasingly complex research questions, there are still many unidentified chemicals and uncertainties in linking exposures to human health outcomes and environmental impacts.
View Article and Find Full Text PDFWhile genetic advances have successfully defined part of the complexity in Parkinson's disease (PD), the clinical characterization of phenotypes remains challenging. Therapeutic trials and cohort studies typically include patients with earlier disease stages and exclude comorbidities, thus ignoring a substantial part of the real-world PD population. To account for these limitations, we implemented the Luxembourg PD study as a comprehensive clinical, molecular and device-based approach including patients with typical PD and atypical parkinsonism, irrespective of their disease stage, age, comorbidities, or linguistic background.
View Article and Find Full Text PDFThe recent introduction of advanced magnetic resonance (MR) imaging techniques to characterize focal and global degeneration in multiple sclerosis (MS), like the Composite Hindered and Restricted Model of Diffusion, or CHARMED, diffusional kurtosis imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI) made available new tools to image axonal pathology non-invasively in vivo. These methods already showed greater sensitivity and specificity compared to conventional diffusion tensor-based metrics (e.g.
View Article and Find Full Text PDFBackground: The role of cortical lesions (CLs) in disease progression and clinical deficits is increasingly recognized in multiple sclerosis (MS); however the origin of CLs in MS still remains unclear.
Objective: Here, we report a para-sulcal CL detected two years after diagnosis in a relapsing-remitting MS (RRMS) patient without manifestation of clinical deficit.
Methods: Ultra-high field (7T) MR imaging using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE) sequence was performed.
J Neural Transm (Vienna)
August 2017
Advanced stages of Parkinson's disease (advPD) still impose a challenge in terms of classification and related stage-adapted treatment recommendations. Previous concepts that define advPD by certain milestones of motor disability apparently fall short in addressing the increasingly recognized complexity of motor and non-motor symptoms and do not allow to account for the clinical heterogeneity that require more personalized approaches. Therefore, deep phenotyping approaches are required to characterize the broad-scaled, continuous and multidimensional spectrum of disease-related motor and non-motor symptoms and their progression under real-life conditions.
View Article and Find Full Text PDFBackground: The pathology of multiple sclerosis (MS) consists of demyelination and neuronal injury, which occur early in the disease; yet, remission phases indicate repair. Whether and how the central nervous system (CNS) maintains homeostasis to counteract clinical impairment is not known.
Objective: We analyse the structural connectivity of white matter (WM) and grey matter (GM) networks to understand the absence of clinical decline as the disease progresses.
Focal demyelinated lesions, diffuse white matter (WM) damage, and gray matter (GM) atrophy influence directly the disease progression in patients with multiple sclerosis. The aim of this study was to identify specific characteristics of GM and WM structural networks in subjects with clinically isolated syndrome (CIS) in comparison to patients with early relapsing-remitting multiple sclerosis (RRMS). Twenty patients with CIS, 33 with RRMS, and 40 healthy subjects were investigated using 3 T-MRI.
View Article and Find Full Text PDFThe use of non-routine MRI sequences such as DIR has highlighted the role of gray matter (GM) pathology in multiple sclerosis (MS). The aim of this study was to assess the detection and relevance of cortical lesions (CLs) using MRI in early (<5 years) MS patients. 3D DIR and 3D FLAIR images at 3T from 122 patients [93 relapsing-remitting MS (RRMS), 29 clinically isolated syndrome (CIS)] were scored for CLs by two blinded readers.
View Article and Find Full Text PDF