Publications by authors named "Pierre J Lutz"

We present a comprehensive experimental rheological dataset for purified entangled ring polystyrenes and their blends with linear chains in nonlinear shear and elongation. In particular, data for shear stress growth coefficient, steady-state shear viscosity, and first and second normal stress differences are obtained and discussed as functions of shear rate as well as molecular parameters (molar mass, blend composition and decreasing molar mass of linear component in blend). Over the extended parameter range investigated, rings do not exhibit clear transient undershoot in shear, in contrast to their linear counterparts and ring-linear blends.

View Article and Find Full Text PDF

We present a systematic investigation of well-characterized, experimentally pure polystyrene (PS) rings with molar mass of 161 000 g/mol in dilute solutions. We measure the ring form factor at - and good-solvent conditions as well as in a polymeric solvent (linear PS of roughly comparable molar mass) by means of small-angle neutron scattering (SANS). Additional dynamic light scattering (DLS) measurements support the SANS data and help elucidate the role of solvent quality and solution preparation.

View Article and Find Full Text PDF

Octafunctionalized spherosilsesquioxanes (Q8M8(H)), decorated with Si-H functions, could be used to design, by coupling via hydrosilylation with α-methoxy-ω-undecenyl poly(ethylene oxide)s (PEOs), organic-inorganic nanocomposite structures. (1)H, (13)C, and (29)Si NMR; size exclusion chromatography; and Fourier transfrom infrared spectroscopy were used to follow the grafting reaction and determine the molar mass and the functionality of the different species. Hybrid star-shaped poly(ethylene oxide)s of precise molar mass and functionality could be isolated by fractional precipitation of the raw reaction product.

View Article and Find Full Text PDF

Four calix[4]arenes containing either one or two ylidic -C(O)CH=PPh3 moieties anchored at p-phenolic carbon atoms were prepared starting from cone-25,27-dipropoxycalix[4]arene (1): 1,3-alternate-5,17-bis(2-triphenylphosphoranylideneacetyl)-25,26,27,28-tetrapropoxycalix[4]arene (12), 1,3-alternate-5-(2-triphenylphosphoranylideneacetyl)-25,26,27,28-tetrapropoxycalix[4]arene (13), cone-5-(2-triphenylphosphoranylideneacetyl)-25,27-dihydroxy-26,28-dipropoxycalix[4]arene (14), cone-5,17-bis(2-triphenylphosphoranylideneacetyl)-25,27-dihydroxy-26,28-dipropoxycalix[4]arene (15). All the ylides were shown to be suitable for the preparation of SHOP-type complexes, i.e.

View Article and Find Full Text PDF

The binding properties of two large diphosphines, cone-5,17-dibromo-11,23-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene (1) and cone-5,17-bis(diphenylphosphino)-25,26,27,28-tetrapropoxycalix[4]arene (2) toward Ni(II) centres have been investigated. Whatever the starting complex, NiBr2 or [NiCp]BF4, quantitative formation of a chelate complex was observed, illustrating the preorganisation of the ligands. An X-ray structure determination was carried out for [NiCp1]BF4 which revealed that the nickel atom is positioned to one side of the calixarene axis, the PNiP plane being roughly parallel to the calixarene reference plane.

View Article and Find Full Text PDF

The present work discusses the grafting by electron beam irradiation of poly(ethylene oxide) (PEO) star-shaped polymers onto porous expanded polytetrafluoroethylene (EXPTFE) surfaces. The resulting materials are intended to combine the good biocompatible properties of PEO with the outstanding mechanical properties of PTFE. The star-shaped PEOs were synthesized via anionic polymerization.

View Article and Find Full Text PDF