Publications by authors named "Pierre Hoerner"

Background: Percutaneous injuries associated with cutting instruments, needles, and other sharps (eg, metallic meshes, bone fragments, etc) occur commonly during surgical procedures, exposing members of surgical teams to the risk for contamination by blood-borne pathogens. This study evaluated the efficacy of an innovative integrated antimicrobial glove to reduce transmission of the human immunodeficiency virus (HIV) following a simulated surgical-glove puncture injury.

Methods: A pneumatically activated puncturing apparatus was used in a surgical-glove perforation model to evaluate the passage of live HIV-1 virus transferred via a contaminated blood-laden needle, using a reference (standard double-layer glove) and an antimicrobial benzalkonium chloride (BKC) surgical glove.

View Article and Find Full Text PDF

Protective layers typically act in a passive way by simply separating two sides. Protection is only efficient as long as the layers are intact. If a high level of protection has to be achieved by thin layers, complementary measures need to be in place to ensure safety, even after breakage of the layer-an important issue in medical applications.

View Article and Find Full Text PDF

The emulsifying and stabilization efficiency of polybutadiene-b-poly(ethylene oxide) and poly(ter butylstyrene)-poly(ethylene oxide) diblock copolymers is examined in non-aqueous emulsions. These emulsions are formed by a dispersion of polyethylene glycol mixed with a cationic surfactant acting as a biocide, in a continuous phase of a thermoplastic elastomer (SEBS) dissolved in methylcyclohexane. Emulsions with controlled droplet size and excellent stability could be obtained, which by solvent evaporation lead to elastomeric films containing droplets of confined disinfecting liquids.

View Article and Find Full Text PDF

Needle puncture and other accidents that occur during surgery and other procedures may lead to viral infections of medical personnel, notably by hepatitis C (HCV) and human immunodeficiency virus (HIV), now that hepatitis B can be prevented by vaccination. A new surgical glove called G-VIR, which contains a disinfecting agent for enveloped viruses, has been developed. Herpes simplex type 1 (HSV) was used as a standard enveloped virus in both in vitro and in vivo tests of the virucidal capacity of the glove.

View Article and Find Full Text PDF