Publications by authors named "Pierre Hilven"

Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation.

View Article and Find Full Text PDF

Huntington's disease (HD) and myotonic dystrophy (DM1) are caused by trinucleotide repeat expansions. The repeats show different instability patterns according to the disorder, cell type and developmental stage. Here we studied the behavior of these repeats in DM1- and HD-derived human embryonic stem cells (hESCs) before and after differentiation, and its relationship to the DNA mismatch repair (MMR).

View Article and Find Full Text PDF

Imprinting is a non-Mendelian form of inheritance where epigenetic modifications control mono-allelic expression depending on the parental origin. Methylation of CpG-dinucleotides at differentially methylated regions (DMRs) is one of the best-studied mechanisms directing expression to one specific parental allele. We studied the methylation patterns of the intergenic (IG)-DMR of DLK1 and GTL2.

View Article and Find Full Text PDF

Recently, several reports have been published that showed a higher incidence of assisted reproductive technologies (ART) in patients with Beckwith-Wiedemann syndrome compared with the general population, and in most of these patients, aberrant methylation imprints of KvDMR1 have been found. This has led to the concern that ART might increase the incidence of imprinting syndromes such as Beckwith-Wiedemann syndrome. Not much is known on environmental or genetic factors that may interfere with the processes of imprint maintenance or resetting.

View Article and Find Full Text PDF

The CTG repeat at the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene shows marked intergenerational and somatic instability in patients with myotonic dystrophy (DM1), when the repeat is expanded to more than approximately 55 repeats. Intensive research has yielded some insights into the timing and mechanism of these intergenerational changes: (1) increases in expansion sizes occur during gametogenesis but probably not during meiosis, (2) the marked somatic mosaicism becomes apparent from the 2nd trimester of development onward and increases during adult life, and (3) DNA repair mechanisms are involved. We have performed preimplantation genetic diagnosis for DM1 since 1995, which has given us the unique opportunity to study the expanded CTG repeat in affected embryos and in gametes from affected patients.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, which uses the nonlinear pathway of arginine biosynthesis, the first two enzymes, N-acetylglutamate synthase (NAGS) and N-acetylglutamate kinase (NAGK), are controlled by feedback inhibition. We have previously shown that NAGS and NAGK associate in a complex, essential to synthase activity and protein level [Abadjieva, A., Pauwels, K.

View Article and Find Full Text PDF