Publications by authors named "Pierre Gouzerh"

The mixed molybdenum/tungsten Keggin-type polyoxometalate (POM) hybrid (TBA)[PWMoO{Sn(CHI)}] (TBA = -butylammonium) has been prepared by the reaction between [α-PWMoO] and [ClSn(CHI)] in dried acetonitrile, in the presence of tetra--butylammonium bromide. A further coupling reaction affords the ferrocenyl derivative (TBA)[PWMoO{Sn(CH)C≡C(CH)Fc}]. The POM hybrids have been thoroughly characterized by NMR and IR spectroscopies.

View Article and Find Full Text PDF

Polyoxometalate (POM) chemistry has recently offered excellent examples of single ion magnets (SIMs) and molecular spin qubits. Compared with conventional coordination compounds, POMs provide rigid and highly symmetric coordination sites. However, all POM-based SIMs reported to date exhibit a very limited range of possibilities for chemical processability.

View Article and Find Full Text PDF

Porous molecular nanocontainers of {Mo132 }-type Keplerates offer unique opportunities to study a wide variety of relevant phenomena. An impressive example is provided by the highly reactive {Mo132 -CO3 } capsule, the reaction of which with valeric acid results in the very easy release of carbon dioxide and the uptake of 24 valerate ions/ligands that are integrated as a densely packed aggregate, thus indicating the unique possibility of hydrophobic clustering inside the cavity. Two-dimensional NMR techniques were used to demonstrate the presence of the 24 valerates and the stability of the capsule up to ca.

View Article and Find Full Text PDF

The present work refers to the challenging issue of fluoride anion recognition/binding in water by taking advantage of the unique possibilities offered by the porous molecular nanocontainers of the {Mo132} Keplerate type allowing the study of a variety of new phenomena. Reaction of the highly reactive carbonate-type capsule with aqueous HF results in the release of carbon dioxide and integration of an unprecedentedly large number of fluoride anions--partly as coordinated ligands at both the pentagonal units and the linkers, partly as a disordered water/fluoride assembly inside the cavity. The internal assembly and some of the fluoride ligands are easily released, which provides interesting options for future studies regarding coordination chemistry and catalysis under confined conditions.

View Article and Find Full Text PDF

This work deals with the generation of large numbers of active sites and with ensuing nucleation/ growth processes on the inside wall of the cavity of porous nanocapsules of the type (pentagon)12(linker)30≡{(Mo(VI))Mo(VI)5}12{Mo(V)2(ligand)}30. A first example refers to sulfur dioxide capture through displacement of acetate ligands, while the grafted sulfite ligands are able to trap {MoO3H}(+) units thereby forming unusual {(O2SO)3MoO3H}(5-) assemblies. A second example relates to the generation of open coordination sites through release of carbon dioxide upon mild acidification of a carbonate-type capsule.

View Article and Find Full Text PDF

The hedgehog-shaped {Mo368} cluster shows unique electronic (extremely high extinction coefficient) and structural features, especially regarding its size, the high number of delocalized electrons which allows to measure the surface enhanced Raman scattering (SERS) spectrum and the option for coordination chemistry inside the cavity. Its relative instability in aqueous solution can be overcome by embedment in a hydrophobic shell of dimethyldioctadecylammonium cations. The resulting hybrid self-assembles into spherical vesicles in acetone-water mixtures, according to a process directed by hydrophobic-hydrophilic interactions.

View Article and Find Full Text PDF

Spherical porous capsules offer new exciting approaches in chemistry, materials sciences, and in context of physical and biological phenomena. The underlying concepts are reported with particular emphasis on metal oxide based capsules of the {M132 } Keplerate type which display-due to their exceptional structural features and easy variation/derivatization as well as exchange of building units-an unmatched range of properties and offer unique opportunities for investigating a variety of basic aspects of nanoscience, including the discovery of some new phenomena, especially those related to hydrophobicity issues that are of significance for everyday life. This relies in particular on the existence of a large number of flexible crown ether type pores/channels and the possibility of changing the interior from completely hydrophilic to completely hydrophobic due to the presence of numerous easily exchangeable internal ligands/functionalities; the capsules can even be constructed so that they enclose a large number of highly active Lewis and Brønsted acid sites.

View Article and Find Full Text PDF

Addition of [Mo(2)(V)O(2)(μ-O)(μ-S)(aq)](2+) linker-type units to a solution/dynamic library containing tungstates results via the formation of the complementary pentagonal {(W)W(5)} units logically in the self-assembly of a mixed oxide/sulphide {W(VI)(72)Mo(V)(60)}-type Keplerate, thereby demonstrating the ability to tune the capsule's skeletal softness (the (μ-O)(2) and (μ-S)(2) scenarios are known) and providing options to influence differently important capsule-substrate interactions.

View Article and Find Full Text PDF

Following Nature's lessons, today chemists can cross the boundary of the small molecule world to construct multifunctional and highly complex molecular nano-objects up to protein size and even cell-like nanosystems showing responsive sensing. Impressive examples emerge from studies of the solutions of some oxoanions of the early transition metals especially under reducing conditions which enable the controlled linking of metal-oxide building blocks. The latter are available from constitutional dynamic libraries, thus providing the option to generate multifunctional unique nanoscale molecular systems with exquisite architectures, which even opens the way towards adaptive and evolutive (Darwinian) chemistry.

View Article and Find Full Text PDF

Salicylamidoxime was used to synthesize 13 new polynuclear Mn(III) complexes. We present the crystallographic structures, the magnetic susceptibility and the magnetization measurements of eight of them (1-8) with the general formula [Mn(6)O(2)(H(2)N-sao)(6)(L)(2)(solvent)(4-6)] (L = carboxylate, chloride, 2-cyanophenolate; solvent = H(2)O, MeOH, EtOH, py). These complexes consist of two trinuclear {Mn(III)(3)(μ(3)-O)(H(2)N-sao)(3)}(+) cationic units linked together via two oximate and two phenolate oxygen atoms.

View Article and Find Full Text PDF

Polyoxometalates (POMs) have remarkable properties and a great deal of potential to meet contemporary societal demands regarding health, environment, energy and information technologies. However, implementation of POMs in various functional architectures, devices or materials requires a processing step. Most developments have considered the exchange of POM counterions in an electrostatically driven approach: immobilization of POMs on electrodes and other surfaces including oxides, embedding in polymers, incorporation into Layer-by-Layer assemblies or Langmuir-Blodgett films and hierarchical self-assembly of surfactant-encapsulated POMs have thus been thoroughly investigated.

View Article and Find Full Text PDF

The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed.

View Article and Find Full Text PDF

The present study refers to a variety of reduced metal-oxide core-shell hybrids, which are unique with regard to their electronic structure, their geometry, and their formation. They contain spherical {Mo72Fe30} Keplerate-type shells encapsulating Keggin-type polyoxomolybdates based on very weak interactions. Studies on the encapsulation of molybdosilicate as well as on the earlier reported molybdophosphate, coupled with the use of several physical methods for the characterization led to unprecedented results (see title).

View Article and Find Full Text PDF

The electroactive benzothiazole hydrazone AMBTH-H(2), a new member of the 2,2'-azino-bis(N-alkylbenzothiazole) family, was synthesised in a five-step procedure and characterised by using X-ray diffraction along with two intermediates and the N-methylbenzothiazole hydrazone MBTH-H(2). Both AMBTH-H(2) and MBTH-H(2) were coupled to [Mo(6)O(19)](2-) in acetonitrile in the presence of dicyclohexylcarbodiimide and dimethylaminopyridine to give two new diazoalkane-hexamolybdates, which were isolated as tetrabutylammonium salts and characterised by using IR, UV/Vis and NMR spectroscopies, cyclic voltammetry and, for one of them, X-ray diffraction. The packing arrangement molecules in crystals of AMBTH-H(2), the redox features of the AMBTH-hexamolybdate hybrid together with a good electronic communication between the organic pi system and the molybdenum centres make these compounds very promising blocks for the synthesis of conducting molecular materials.

View Article and Find Full Text PDF

A magneto-structural study of two salicylamidoxime-based {Mn(6)} single-molecule magnets revealed that their anisotropy energy barriers, which can reach the current record for d-transition metal complexes, are strongly dependent upon the precise arrangement of ligands and the solvation state.

View Article and Find Full Text PDF

Organosilyl/-germyl polyoxotungstate hybrids [PW(9)O(34)(tBuSiO)(3)Ge(CH(2))(2)CO(2)H](3-) (1a), [PW(9)O(34)(tBuSiO)(3)Ge(CH(2))(2)CONHCH(2)C[triple bond]CH](3-) (2 a), [PW(11)O(39)Ge(CH(2))(2)CO(2)H](4-) (3a), and [PW(11)O(39)Ge(CH(2))(2)CONHCH(2)C[triple bond]CH](4-) (4a) have been prepared as tetrabutylammonium salts and characterized in solution by multinuclear NMR spectroscopy. The crystal structure of (NBu(4))(3)1a.H(2)O has been determined and the electrochemical behavior of 1a and 2a has been investigated by cyclic voltammetry.

View Article and Find Full Text PDF

Reaction of the cyclic {P(8)W(48)} polyoxotungstate host with sodium molybdate in solution in the presence of a reducing agent leads to the formation and stabilization of unprecedented neutral {Mo(V)(4)O(10)(H(2)O)(3)} aggregates with handle function, thereby proving the potential of the present host for performing future interesting studies related to mixed-valence type chemistry under confined conditions.

View Article and Find Full Text PDF

We report the self-assembly processes in solution of three Keplerate-type molybdenum-oxide based clusters {Mo72V30}, {Mo72Cr30} and {Mo72Fe30} (all with diameters of approximately 2.5 nm). These clusters behave as unique weak polyprotic acids owing to the external water ligands attached to the non-Mo metal centers.

View Article and Find Full Text PDF

Protein kinase CK2 is a multifunctional kinase of medical importance that is dysregulated in many cancers. In this study, polyoxometalates were identified as original CK2 inhibitors. [P2Mo18O62](6-) has the most potent activity.

View Article and Find Full Text PDF

Functionalization via covalent grafting of organic functions allows to tune the redox and acid-base properties, and the solubility of polyoxometalates, to enhance their stability and biological activity and to reduce their toxicity, to facilitate their implementation in extended structures and functional devices. We discuss herein the electronic and binding connections, and the various synthesis methodologies. We emphasize on organonitrogen, organosilyl and organophosphonyl derivatives with special attention to synthesis, characterization and potential applications in catalysis and materials science.

View Article and Find Full Text PDF

Lanthanide complexes of the chiral Dawson phosphotungstate [alpha(1)-P(2)W(17)O(61)](10-) were used to study the formation of diastereomers with optically pure organic ligands. The present work started with the full assignment of the (183)W NMR spectra of [alpha(1)-Yb(H(2)O)(4)P(2)W(17)O(61)](7-) at different temperatures and concentrations, which allowed the structure of the dimerized form in aqueous solution to be established. Different enantiopure amino acids and phosphonic acids were screened as ligands.

View Article and Find Full Text PDF

Clusters which display the rare cubic Fe8 topology have been obtained by reaction of the metastable hexavacant polyoxotungstate [H2P2W12O48]12- with basic trinuclear metal acetates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: