The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 μM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344).
View Article and Find Full Text PDFPositive allosteric modulators of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA)-type ionotropic glutamate receptors are promising compounds for treatment of neurological disorders, for example, Alzheimer's disease. Here, we report synthesis and pharmacological evaluation of a series of mono-, di-, or trialkyl-substituted 7-chloro-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides, comprising in total 16 new modulators. The trisubstituted compounds 7b, 7d, and 7e revealed potent activity (EC2× = 2.
View Article and Find Full Text PDFTwo 4-ethyl-substituted pyridothiadiazine dioxides belonging to α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor positive allosteric modulators were cocrystallized with the GluA2 ligand binding domain in order to decipher the impact of the position of the nitrogen atom on their binding mode at the AMPA receptors. The latter was found to be very similar to that of previously described benzothiadiazine-type AMPA receptor modulators. The affinity of the two compounds for the receptor was determined by isothermal titration calorimetry.
View Article and Find Full Text PDFOn the basis of the results obtained in previous series of AMPA potentiators belonging to 3,4-dihydro-2H-benzo- and 3,4-dihydro-2H-pyrido-1,2,4-thiadiazine 1,1-dioxides, the present work focuses on the design of original isosteric 3,4-dihydro-2H-thieno-1,2,4-thiadiazine 1,1-dioxides. Owing to the sulfur position, three series of compounds were developed and their activity as AMPA potentiators was characterized. In each of the developed series, potent compounds were discovered.
View Article and Find Full Text PDFIn the search of a potent cognitive enhancer, a series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as positive allosteric modulators of the AMPA receptors. In the present work, we focused our efforts on the insertion of mono- or polyfluoro-substituted alkyl chains at the 4-position of the thiadiazine ring in an attempt to enhance the pharmacokinetic behavior of previously described compounds. Among all the described compounds, 7-chloro-4-(2-fluoroethyl)-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide, 12b, was shown to exert a strong activity on AMPA receptors in vitro and a marked cognitive-enhancing effect in vivo after oral administration to Wistar rats.
View Article and Find Full Text PDFThe synthesis of 5-chloro-, 6-chloro-, and 8-chloro-substituted 3-alkylamino/cycloalkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides is described. Their inhibitory effect on the insulin releasing process and their vasorelaxant activity was compared to that of previously reported 7-chloro-3-alkylamino/cycloalkylamino-4H-1,2,4-benzothiadiazine 1,1-dioxides. "5-Chloro" compounds were found to be essentially inactive on both the insulin-secreting and the smooth muscle cells.
View Article and Find Full Text PDFTaking into account structure-activity relationships obtained with our previous series, new diversely substituted 1,2,4-pyridothiadiazine 1,1-dioxides were designed to obtain novel AMPA potentiators. The aim of this work was focused on the improvement of lipophilicity, which is well known as a critical parameter to obtain in vivo active central nervous system agents. For this purpose, two positions on the pyridine ring were privileged to insert selected groups.
View Article and Find Full Text PDFGlutamate is the major excitatory neurotransmitter in the brain. Amongst ionotropic receptors responding to glutamate, the AMPA subtype has been considered as essential for the fast excitatory neurotransmission in the central nervous system and the expression and maintenance of long-term potentiation. As glutamate is known to be involved in many neurological and psychiatric disorders, AMPA receptors seem to represent interesting targets to develop therapeutic drugs.
View Article and Find Full Text PDFA series of 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides have been synthesized and evaluated as potentiators of AMPA receptors. Attention was paid to the impact of the substituent introduced at the 7-position of the heterocycle. The biological evaluation was achieved by measuring the AMPA current in rat cortex mRNA-injected Xenopus oocytes.
View Article and Find Full Text PDF