Publications by authors named "Pierre Doyen"

Acting as GTPase activating proteins promoting the silencing of activated G-proteins, regulators of G protein signaling (RGSs) are generally considered negative modulators of cell signaling. In the CNS, the expression of RGS4 is altered in diverse pathologies and its upregulation was reported in astrocytes exposed to an inflammatory environment. In a model of cultured cortical astrocytes, we herein investigate the influence of RGS4 on intracellular calcium signaling mediated by type 5 metabotropic glutamate receptor (mGluR5), which is known to support the bidirectional communication between neurons and glial cells.

View Article and Find Full Text PDF

Neuropathic pain, a specific type of chronic pain resulting from persistent nervous tissue lesions, is a debilitating condition that affects about 7% of the population. This condition remains particularly difficult to treat because of the poor understanding of its underlying mechanisms. Drugs currently used to alleviate this chronic pain syndrome are of limited benefit due to their lack of efficacy and the elevated risk of side effects, especially after a prolonged period of treatment.

View Article and Find Full Text PDF

The amyloid precursor protein (APP) has been extensively studied as the precursor of the β-amyloid (Aβ) peptide, the major component of the senile plaques found in the brain of Alzheimer's disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain.

View Article and Find Full Text PDF

Accumulating evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is a non-cell-autonomous process and that impaired glutamate clearance by astrocytes, leading to excitotoxicity, could participate in progression of the disease. In astrocytes derived from an animal model of ALS (hSOD1 rats), activation of type 5 metabotropic glutamate receptor (mGluR5) fails to increase glutamate uptake, impeding a putative dynamic neuroprotective mechanism involving astrocytes. Using astrocyte cultures from hSOD1 rats, we have demonstrated that the typical Ca oscillations associated with mGluR5 activation were reduced, and that the majority of cells responded with a sustained elevation of intracellular Ca concentration.

View Article and Find Full Text PDF

Background: Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes.

View Article and Find Full Text PDF

A critical role has been assigned to protein kinase C (PKC)ε in the control of intracellular calcium oscillations triggered upon activation of type 5 metabotropic glutamate receptor (mGluR5) in cultured astrocytes. Nevertheless, the physiological significance of this particular signalling profile in the response of astrocytes to glutamate remains largely unknown. Considering that kinases are frequently involved in the regulation of G protein-coupled receptors, we have examined a putative link between the nature of the calcium signals and the response regulation upon repeated exposures of astrocytes to the agonist (S)-3,5-dihydroxyphenylglycine.

View Article and Find Full Text PDF

Tactile hypersensitivity is one of the most debilitating symptoms of neuropathic pain syndromes. Clinical studies have suggested that its presence at early postoperative stages may predict chronic (neuropathic) pain after surgery. Currently available animal models are typically associated with consistent tactile hypersensitivity and are therefore limited to distinguish between mechanisms that underlie tactile hypersensitivity as opposed to mechanisms that protect against it.

View Article and Find Full Text PDF

Background And Purpose: Regulators of G protein signalling (RGS) are major determinants of metabotropic receptor activity, reducing the lifespan of the GTP-bound state of G proteins. Because the reduced potency of analgesic agents in neuropathic pain may reflect alterations in RGS, we assessed the effects of CCG 63802, a specific RGS4 inhibitor, on pain hypersensitivity and signalling through cannabinoid receptors, in a model of neuropathic pain.

Experimental Approach: The partial sciatic nerve ligation (PSNL) model in male Sprague Dawley rats was used to measure paw withdrawal thresholds to mechanical (von Frey hairs) or thermal (Hargreaves method) stimuli, during and after intrathecal injection of CCG 63802.

View Article and Find Full Text PDF