Background: Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns.
View Article and Find Full Text PDFChlamydia are obligate intracellular pathogens. Upon contact with the host, they use type III secretion to deliver proteins into the cell, thereby triggering actin-dependent entry and establishing the infection. We observed that Chlamydia caviae elicited a local and transient accumulation of ubiquitinated proteins at the entry sites, which disappeared within 20 min.
View Article and Find Full Text PDFBackground: Helicobacter pylori is a major gastric bacterial pathogen, presumed to have established itself in the human stomach approximately 100,000 years ago. Helicobacter pylori co-evolved with its host, and human migrations shaped the expansion and the diversity of strains around the world. Here, we investigated the population structure and the genomic diversity of H.
View Article and Find Full Text PDFBackground: Chlamydiae are obligate intracellular bacteria that multiply in a vacuolar compartment, the inclusion. Several chlamydial proteins containing a bilobal hydrophobic domain are translocated by a type III secretion (TTS) mechanism into the inclusion membrane. They form the family of Inc proteins, which is specific to this phylum.
View Article and Find Full Text PDFChlamydiae are Gram-negative, obligate intracellular pathogens that replicate within a membrane-bounded compartment termed an inclusion. Throughout their development, they actively modify the eukaryotic environment. The type III secretion (TTS) system is the main process by which the bacteria translocate effector proteins into the inclusion membrane and the host cell cytoplasm.
View Article and Find Full Text PDFMany intracellular pathogens rely on host cell membrane compartments for their survival. The strategies they have developed to subvert intracellular trafficking are often unknown, and SNARE proteins, which are essential for membrane fusion, are possible targets. The obligate intracellular bacteria Chlamydia replicate within an intracellular vacuole, termed an inclusion.
View Article and Find Full Text PDFWe describe the preliminary analysis of over 35,000 clones from a full-length enriched cDNA library from the malaria mosquito vector Anopheles gambiae. The clones define nearly 3,700 genes, of which around 2,600 significantly improve current gene definitions. An additional 17% of the genes were not previously annotated, suggesting that an equal percentage may be missing from the current Anopheles genome annotation.
View Article and Find Full Text PDFAmi is an autolytic amidase from Listeria monocytogenes that is targeted to the bacterial surface via its C-terminal cell wall anchoring (CWA) domain. We recently showed that the CWA domain from Ami of L. monocytogenes EGD (serovar 1/2a) (Ami 1/2a) mediated bacterial binding to mammalian cells.
View Article and Find Full Text PDFListeria monocytogenes is an opportunistic food-borne human and animal pathogen. Several surface proteins expressed by this intracellular pathogen are critical for the infectious process. By in silico analysis we compared the surface protein repertories of L.
View Article and Find Full Text PDFActin polymerization, the main driving force for cell locomotion, is also used by the bacteria Listeria and Shigella and vaccinia virus for intracellular and intercellular movements. Seminal studies have shown the key function of the Arp2/3 complex in nucleating actin and generating a branched array of actin filaments during membrane extension and pathogen movement. Arp2/3 requires activation by proteins such as the WASP-family proteins or ActA of Listeria.
View Article and Find Full Text PDFThe completion of the sequencing of the genomes of both Rickettsia conorii and R. prowazekii provides the opportunity to identify putative virulence factors within these strictly intracellular pathogens. A role for a phospholipase A(2) (PLA(2)) in rickettsial pathogenicity was hypothesized, but the corresponding gene has not been identified.
View Article and Find Full Text PDFThe Anopheles gambiae genome sequence has been analyzed to find ATP-binding cassette protein genes based on deduced protein similarity to known family members. A nonredundant collection of 44 putative genes was identified including five genes not detected by the original Anopheles genome project machine annotation. These genes encode at least one member of all the human and Drosophila melanogaster ATP-binding protein subgroups.
View Article and Find Full Text PDFListeria monocytogenes is a bacterial pathogen causing severe food-borne infections in humans and animals. It can sense and adapt to a variety of harsh microenvironments outside as well as inside the host. Once ingested by a mammalian host, the bacterial pathogen reaches the intestinal lumen, where it encounters bile salts which, in addition to their role in digestion, have antimicrobial activity.
View Article and Find Full Text PDFOn the basis of the recently determined genome sequence of Listeria monocytogenes, we performed a global analysis of the surface-protein-encoding genes. Only proteins displaying a signal peptide were taken into account. Forty-one genes encoding LPXTG proteins, including the previously known internalin gene family, were detected.
View Article and Find Full Text PDFDuring infection of their hosts, Gram-positive bacteria express surface proteins that serve multiple biological functions. Surface proteins harbouring a C-terminal sorting signal with an LPXTG motif are covalently linked to the cell wall peptidoglycan by a transamidase named sortase. Two genes encoding putative sortases, termed srtA and srtB, were identified in the genome of the intracellular pathogenic bacterium Listeria monocytogenes.
View Article and Find Full Text PDF