In this paper, we describe an assay to analyze simultaneously the oxygen consumption rate (OCR) and superoxide production in a biological system. The analytical set-up uses electron paramagnetic resonance (EPR) spectroscopy with two different isotopically-labelled sensors: N-PDT (4-oxo-2,2,6,6-tetramethylpiperidine-d-N-1-oxyl) as oxygen-sensing probe and N-CMH (1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine, a cyclic hydroxylamine, as sensor of reactive oxygen species (ROS). The superoxide contribution to CMH oxidation is assessed using SOD or PEGSOD as controls.
View Article and Find Full Text PDFThe clinical management of head and neck squamous cell carcinoma (HNSCC) commonly involves chemoradiotherapy, but recurrences often occur that are associated with radioresistance. Using human SQD9 laryngeal squamous cell carcinoma cancer cells as a model, we aimed to identify metabolic changes associated with acquired radioresistance. In a top-down approach, matched radiosensitive and radioresistant SQD9 cells were generated and metabolically compared, focusing on glycolysis, oxidative phosphorylation (OXPHOS) and ROS production.
View Article and Find Full Text PDFPurpose: Magnetoliposomes (MLs) have shown great potential as magnetic resonance imaging contrast agents and as delivery vehicles for cancer therapy. Targeting the MLs towards the tumor cells or neovascularization could ensure delivery of drugs at the tumor site. In this study, we evaluated the potential of MLs targeting the αvβ3 integrin overexpressed on tumor neovascularization and different tumor cell types, including glioma and ovarian cancer.
View Article and Find Full Text PDFMelanoma is the most aggressive skin tumour type. Although complete cure can be achieved when the whole tumour is resected, prognostic dramatically drops when melanoma cells reach deeper tissues and lymph nodes. Hence, there is an urgent need to develop accurate tools allowing () discriminating benign naevi from malignant tumours and () being able to characterise melanoma infiltration.
View Article and Find Full Text PDFMetastatic dissemination continues to be a major cause of prostate cancer (PCa) mortality, creating a compelling need to understand factors that play a role in the metastatic cascade. Since hypoxia plays an important role in PCa aggressiveness, we characterized patterns of hypoxia in the primary tumor and metastatic environments of a human PCa xenograft. We previously developed and characterized an imaging strategy based on the hypoxia response element (HRE)-driven expression of long-lived enhanced green fluorescent protein (EGFP) and short-lived luciferase (luc) fused to the oxygen-dependent degradation domain in human PCa PC-3 cells.
View Article and Find Full Text PDFAcriflavine (ACF) hydrochloride is currently repurposed as multimodal drug, inhibiting hypoxia-inducible factors (HIF) pathways and exerting cytotoxic properties. The aim of this study was to encapsulate ACF in reverse micelles and to incorporate this suspension in lipid nanocapsules (LNC). Designs of experiments were used to work under quality by design conditions.
View Article and Find Full Text PDFObjectives: Electron paramagnetic resonance (EPR) oximetry using particulate materials allows repeatable measurements of oxygen in tissues. However, the materials identified so far are not medical devices, thus precluding their immediate use in clinical studies. The aim of this study was to assess the magnetic properties of Carbo-Rep, a charcoal suspension used as a liquid marker for preoperative tumor localization.
View Article and Find Full Text PDFIntroduction: Glioblastoma (GBM) therapy is highly challenging, as the tumors are very aggressive due to infiltration into the surrounding normal brain tissue. Even a combination of the available therapeutic regimens may not debulk the tumor completely. GBM tumors are also known for recurrence, resulting in survival rates averaging <18 months.
View Article and Find Full Text PDFThe utility of reporter genes has gained significant momentum over the last three decades. Reporter genes are used to understand the transcriptional activity of a gene both in vitro and in vivo, and in pathway analysis and drug screening for diseases involving protozoan parasites, and in anti-cancer drug developments. Here, using a human prostate cancer xenograft model (PC3), we describe a method to construct and validate hypoxia reporter genes with different half-lives.
View Article and Find Full Text PDFMetastasis is of dismal prognosis for cancer patients, but recent evidence in mouse models of cancer shows that metastasis prevention is a reachable clinical objective. These experiments indicate that altered mitochondrial activities are associated with the metastatic phenotype. Mitochondrial transfer from metastatic to non-metastatic cells can indeed transfer the metastatic phenotype, and metastatic progenitor cells differ from other cancer cells by a higher sublethal production of mitochondrial reactive oxygen species (ROS).
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
August 2017
Altered metabolism in cancer cells is pivotal for tumor growth, most notably by providing energy, reducing equivalents and building blocks while several metabolites exert a signaling function promoting tumor growth and progression. A cancer tissue cannot be simply reduced to a bulk of proliferating cells. Tumors are indeed complex and dynamic structures where single cells can heterogeneously perform various biological activities with different metabolic requirements.
View Article and Find Full Text PDFTumor hypoxia has long been considered as a detrimental factor for the response to irradiation. In order to improve the sensitivity of tumors cells to radiation therapy, tumor hypoxia may theoretically be alleviated by increasing the oxygen delivery or by decreasing the oxygen consumption by tumor cells. Mathematical modelling suggested that decreasing the oxygen consumption should be more efficient than increasing oxygen delivery in order to alleviate tumor hypoxia.
View Article and Find Full Text PDFMetabolic adaptability is essential for tumor progression and includes cooperation between cancer cells with different metabolic phenotypes. Optimal glucose supply to glycolytic cancer cells occurs when oxidative cancer cells use lactate preferentially to glucose. However, using lactate instead of glucose mimics glucose deprivation, and glucose starvation induces autophagy.
View Article and Find Full Text PDFThe aim of the study was to assess the link between the metabolic profile and the proliferation capacity of a range of human and murine cancer cell lines. First, the combination of mitochondrial respiration and glycolytic efficiency measurements allowed the determination of different metabolic profiles among the cell lines, ranging from a mostly oxidative to a mostly glycolytic phenotype. Second, the study revealed that cell proliferation, evaluated by DNA synthesis measurements, was statistically correlated to glycolytic efficiency.
View Article and Find Full Text PDFHere we have developed a hypoxia response element driven imaging strategy that combined the hypoxia-driven expression of two optical reporters with different half-lives to detect temporal changes in hypoxia and hypoxia inducible factor (HIF) activity. For this purpose, human prostate cancer PC3 cells were transfected with the luciferase gene fused with an oxygen-dependent degradation domain (ODD-luc) and a variant of the enhanced green fluorescent protein (EGFP). Both ODD-luciferase and EGFP were under the promotion of a poly-hypoxia-response element sequence (5xHRE).
View Article and Find Full Text PDFHydrogen sulfide (H2S) is the last gaseous transmitter identified in mammals, and previous studies have reported disparate conclusions regarding the implication of H2S in cancer progression. In the present study, we hypothesized that sodium hydrosulfide (NaHS), a fast H2S-releasing donor, might interfere with the mitochondrial respiratory chain of tumor cells, increase tumor oxygenation, and potentiate the response to irradiation. Using electron paramagnetic resonance (EPR) oximetry, we found a rapid increase in tumor pO2 after NaHS administration (0.
View Article and Find Full Text PDFThe cholinic phenotype, characterized by elevated phosphocholine and a high production of total-choline (tCho)-containing metabolites, is a metabolic hallmark of cancer. It can be exploited for targeted therapy. Non-invasive imaging biomarkers are required to evaluate an individual's response to targeted anticancer agents that usually do not rapidly cause tumor shrinkage.
View Article and Find Full Text PDFGlucose fermentation through glycolysis even in the presence of oxygen (Warburg effect) is a common feature of cancer cells increasingly considered as an enticing target in clinical development. This study aimed to analyze the link between metabolism, energy stores and proliferation rates in cancer cells. We found that cell proliferation, evaluated by DNA synthesis quantification, is correlated to glycolytic efficiency in six cancer cell lines as well as in isogenic cancer cell lines.
View Article and Find Full Text PDFCell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs.
View Article and Find Full Text PDFPaclitaxel (PTX)-loaded polymeric micelles (M-PTX) have been shown to enhance the blood flow and oxygenation of tumors 24h after treatment. We hypothesized that these changes in the tumor microenvironment could lead to an enhancement of the EPR (enhanced permeability and retention) effect. M-PTX, administered 24h before analysis, increased the accumulation of macromolecules, nanoparticles and polymeric micelles in tumors.
View Article and Find Full Text PDFContrast Media Mol Imaging
May 2016
The purpose of this paper is to describe some of the areas where electron paramagnetic resonance (EPR) has provided unique information to MRI developments. The field of application mainly encompasses the EPR characterization of MRI paramagnetic contrast agents (gadolinium and manganese chelates, nitroxides) and superparamagnetic agents (iron oxide particles). The combined use of MRI and EPR has also been used to qualify or disqualify sources of contrast in MRI.
View Article and Find Full Text PDFMetastatic progression of cancer is associated with poor outcome, and here we examine metabolic changes underlying this process. Although aerobic glycolysis is known to promote metastasis, we have now identified a different switch primarily affecting mitochondria. The switch involves overload of the electron transport chain (ETC) with preserved mitochondrial functions but increased mitochondrial superoxide production.
View Article and Find Full Text PDFMRI cell tracking is a promising technique for tracking various cell types in living animals. Usually, cells are incubated with iron oxides so that the particles are taken up before the cells are injected in vivo. In the present study, we aimed to monitor migration of luciferase-expressing mouse renal cancer cells (RENCA-luc) after intrarenal or intrasplenic injection.
View Article and Find Full Text PDF