Leishmaniases are an ensemble of diseases caused by the protozoan parasite of the genus Leishmania. Current antileishmanial treatments are limited and present main issues of toxicity and drug resistance emergence. Therefore, the generation of new inhibitors specifically directed against a leishmanial target is an attractive strategy to expand the chemotherapeutic arsenal.
View Article and Find Full Text PDFA series of non-hydrolysable 5'-aryl substituted GDP analogs has been synthesized by reacting 5'-azido-5'-deoxyguanosine with different aryl- and benzyloxy-alkynes. Cu(I) nanoparticles in water were found to be the most efficient catalyst, producing the desired 5'-arylguanosines with good yields. The synthesized compounds were screened for in vitro antileishmanial activity against Leishmania donovani axenic amastigotes and intramacrophage amastigotes stages.
View Article and Find Full Text PDFLeishmania is the parasite responsible for the neglected disease leishmaniasis. Its virulence and survival require biosynthesis of glycoconjugates, whose guanosine diphospho-d-mannose pyrophosphorylase (GDP-MP) is a key player. However, experimentally resolved structures of this enzyme are still lacking.
View Article and Find Full Text PDF