The preservation of gene expression patterns that define cellular identity throughout the cell division cycle is essential to perpetuate cellular lineages. However, the progression of cells through different phases of the cell cycle severely disrupts chromatin accessibility, epigenetic marks, and the recruitment of transcriptional regulators. Notably, chromatin is transiently disassembled during S-phase and undergoes drastic condensation during mitosis, which is a significant challenge to the preservation of gene expression patterns between cell generations.
View Article and Find Full Text PDFand expression levels can be used as reporters for signaling through the pheromone pathway in the budding yeast . Here, we describe an optimized protocol to measure the expression levels of and using quantitative reverse transcription PCR (RT-qPCR). We describe the steps for comparing untreated and pheromone-treated yeast cells and how to quantify the changes in various deletion strains.
View Article and Find Full Text PDFThe cyclin-dependent kinase Cdk1 is best known for its function as master regulator of the cell cycle. It phosphorylates several key proteins to control progression through the different phases of the cell cycle. However, studies conducted several decades ago with mammalian cells revealed that Cdk1 also directly regulates the basal transcription machinery, most notably RNA polymerase II.
View Article and Find Full Text PDFTight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq.
View Article and Find Full Text PDFMechanisms have evolved that allow cells to detect signals and generate an appropriate response. The accuracy of these responses relies on the ability of cells to discriminate between signal and noise. How cells filter noise in signaling pathways is not well understood.
View Article and Find Full Text PDFPost-translational modification by small ubiquitin-like modifier (Sumo) regulates many cellular processes, including the adaptive response to various types of stress, referred to as the Sumo stress response (SSR). However, it remains unclear whether the SSR involves a common set of core proteins regardless of the type of stress or whether each particular type of stress induces a stress-specific SSR that targets a unique, largely nonoverlapping set of Sumo substrates. In this study, we used MS and a Gene Ontology approach to identify differentially sumoylated proteins during heat stress, hyperosmotic stress, oxidative stress, nitrogen starvation, and DNA alkylation in cells.
View Article and Find Full Text PDFDuring mitosis, chromatin condensation shapes chromosomes as separate, rigid, and compact sister chromatids to facilitate their segregation. Here, we show that, unlike wild-type yeast chromosomes, non-chromosomal DNA circles and chromosomes lacking a centromere fail to condense during mitosis. The centromere promotes chromosome condensation strictly in cis through recruiting the kinases Aurora B and Bub1, which trigger the autonomous condensation of the entire chromosome.
View Article and Find Full Text PDFtRNA genes are transcribed by RNA polymerase III (RNAPIII). During recent years it has become clear that RNAPIII activity is strictly regulated by the cell in response to environmental cues and the homeostatic status of the cell. However, the molecular mechanisms that control RNAPIII activity to regulate the amplitude of tDNA transcription in normally cycling cells are not well understood.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
April 2018
RNA polymerase III (RNAPIII) transcribes tRNA genes, 5S RNA as well as a number of other non-coding RNAs. Because transcription by RNAPIII is an energy-demanding process, its activity is tightly linked to the stress levels and nutrient status of the cell. Multiple signaling pathways control RNAPIII activity in response to environmental cues, but exactly how these pathways regulate RNAPIII is still poorly understood.
View Article and Find Full Text PDFCdk1 (Cdc28 in yeast) is a cyclin-dependent kinase (CDK) essential for cell cycle progression and cell division in normal cells. However, CDK activity also underpins proliferation of tumor cells, making it a relevant study subject. While numerous targets and processes regulated by Cdc28 have been identified, the exact functions of Cdc28 are only partially understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Maintaining cellular homeostasis under changing nutrient conditions is essential for the growth and development of all organisms. The mechanisms that maintain homeostasis upon loss of nutrient supply are not well understood. By mapping the SUMO proteome in Saccharomyces cerevisiae, we discovered a specific set of differentially sumoylated proteins mainly involved in transcription.
View Article and Find Full Text PDFThe small ubiquitin-like modifier SUMO regulates many aspects of cellular physiology to maintain cell homeostasis, both under normal conditions and during cell stress. Components of the transcriptional apparatus and chromatin are among the most prominent SUMO substrates. The prevailing view is that SUMO serves to repress transcription.
View Article and Find Full Text PDFTranscription factors are abundant Sumo targets, yet the global distribution of Sumo along the chromatin and its physiological relevance in transcription are poorly understood. Using Saccharomyces cerevisiae, we determined the genome-wide localization of Sumo along the chromatin. We discovered that Sumo-enriched genes are almost exclusively involved in translation, such as tRNA genes and ribosomal protein genes (RPGs).
View Article and Find Full Text PDFVery long chain fatty acids (VLCFAs) are essential fatty acids with multiple functions, including ceramide synthesis. Although the components of the VLCFA biosynthetic machinery have been elucidated, how their activity is regulated to meet the cell's metabolic demand remains unknown. The goal of this study was to identify mechanisms that regulate the rate of VLCFA synthesis, and we discovered that the fatty acid elongase Elo2 is regulated by phosphorylation.
View Article and Find Full Text PDFIn the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases (CDKs) Kin28, Bur1 and Ctk1 regulate basal transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. However, very little is known about the involvement of the cell cycle CDK Cdc28 in the transcription process. We have recently shown that, upon cell cycle entry, Cdc28 kinase activity boosts transcription of a subset of genes by directly stimulating the basal transcription machinery.
View Article and Find Full Text PDFThe cyclin-dependent kinase Cdc28 is the master regulator of the cell cycle in Saccharomyces cerevisiae. Cdc28 initiates the cell cycle by activating cell-cycle-specific transcription factors that switch on a transcriptional program during late G1 phase. Cdc28 also has a cell-cycle-independent, direct function in regulating basal transcription, which does not require its catalytic activity.
View Article and Find Full Text PDFCyclin-dependent kinases (CDKs) control the eukaryotic cell cycle, and a single CDK, Cdc28 (also known as Cdk1), is necessary and sufficient for cell cycle regulation in the budding yeast Saccharomyces cerevisiae. Cdc28 regulates cell cycle-dependent processes such as transcription, DNA replication and repair, and chromosome segregation. To gain further insight into the functions of Cdc28, we performed a high-throughput chemical-genetic array (CGA) screen aimed at unraveling the genetic network of CDC28.
View Article and Find Full Text PDFIn response to hormonal stimuli, a cascade of hierarchical post-translational modifications of nuclear receptors are required for the correct expression of target genes. Here, we show that the transcription factor TFIIH, via its cdk7 kinase, phosphorylates the androgen receptor (AR) at position AR/S515. Strikingly, this phosphorylation is a key step for an accurate transactivation that includes the cyclic recruitment of the transcription machinery, the MDM2 E3 ligase, the subsequent ubiquitination of AR at the promoter of target genes and its degradation by the proteasome machinery.
View Article and Find Full Text PDFMutations in the human XPG gene give rise to an inherited photosensitive disorder, xeroderma pigmentosum (XP) associated with Cockayne syndrome (XP-G/CS). The clinical features of CS in XP-G/CS patients are difficult to explain on the basis of a defect in nucleotide excision repair (NER). We found that XPG forms a stable complex with TFIIH, which is active in transcription and NER.
View Article and Find Full Text PDF