Background: Carbon disulfide (CS) exacerbates the effect of noise on hearing, and disrupts the vestibular system. The goal of this study was to determine whether these effects are also observed with intermittent CS exposure.
Methods: Rats were exposed for 4 weeks (5 days/week, 6 h/day) to a band noise at 106 dB SPL either alone or combined with continuous (63 ppm or 250 ppm) or intermittent (15 min/h or 2 × 15 min/h at 250 ppm) CS.
Volatile organic solvents are frequently present in industrial atmospheres. Their lipophilic properties mean they quickly reach the brain following inhalation. Acute exposure to some solvents perturbs the middle ear reflex, which could jeopardize cochlear protection against loud noises.
View Article and Find Full Text PDFChronic occupational exposure to carbon disulfide (CS2) has debilitating motor and sensory effects in humans, which can increase the risk of falls. Although no mention of vestibulotoxic effects is contained in the literature, epidemiological and experimental data suggest that CS2 could cause low-frequency hearing loss when associated with noise exposure. Low-frequency noise might also perturb the peripheral balance receptor through an as-yet unclear mechanism.
View Article and Find Full Text PDFThe aim of this exploratory study was to examine whether the kurtosis metric can contribute to investigations of the effects of combined exposure to noise and solvents on human hearing thresholds. Twenty factory workers exposed to noise and solvents along with 20 workers of similar age exposed only to noise in eastern China were investigated using pure-tone audiometry (1000-8000 Hz). Exposure histories and shift-long noise recording files were obtained for each participant.
View Article and Find Full Text PDFInt J Occup Med Environ Health
January 2018
Objectives: To determine whether call center dispatchers wearing headsets are subject to auditory fatigue at the end of a work shift.
Material And Methods: Data was gathered at times when call centers were busiest. All call operators wore a headset for up to 12 h.
1. Multiple exposures are ubiquitous in industrial environments. In this article, we highlight the risks faced by workers and complete the data available on the metabolic impact of a common mixture: toluene (TOL) and methylethylketone (MEK).
View Article and Find Full Text PDFCarbon disulfide (CS) is used in industry; it has been shown to have neurotoxic effects, causing central and distal axonopathies.However, it is not considered cochleotoxic as it does not affect hair cells in the organ of Corti, and the only auditory effects reported in the literature were confined to the low-frequency region. No reports on the effects of combined exposure to low-frequency noise and CS have been published to date.
View Article and Find Full Text PDFMethylethylketone (MEK) is widely used in industry, often in combination with other compounds. Although nontoxic, it can make other chemicals harmful. This study investigates the fate of MEK in rat blood, brain and urine as well as its hepatic metabolism following inhalation over 1 month (at 20, 200 or 1400 ppm).
View Article and Find Full Text PDFOccupational noise can damage workers' hearing, and the phenomenon is even more dangerous when noise is associated with an ototoxic solvent. Aromatic solvents are known to provoke chemical-induced hearing loss, but little is known about the effects on hearing of carbon disulfide (CS) when combined with noise. Co-exposure to CS and noise may have a harmful effect on hearing, but the mechanisms involved are not well understood.
View Article and Find Full Text PDFSome volatile aromatic solvents have similar or opposite effects to anesthetics in the central nervous system. Like for anesthetics, the mechanisms of action involved are currently the subject of debate. This paper presents an in vivo study to determine whether direct binding or effects on membrane fluidity best explain how solvents counterbalance anesthesia's depression of the middle-ear reflex (MER).
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
September 2016
Introduction: In human and veterinary medicine, the injectable drugs ketamine and xylazine are mainly used in combination to induce, and then maintain general anaesthesia; they also provide pain and stress relief. Some side-effects have been reported on the auditory brainstem response, a method is therefore required to determine their concentrations in the brain.
Methods: This paper presents a method to determine nanogramme quantities of ketamine and xylazine in rat brain using liquid-liquid extraction and gas chromatography-mass spectrometry in selective ion monitoring mode.
Neurotoxicol Teratol
December 2015
The neuropharmacological and cochleotoxic effects of styrene can exacerbate the impact of noise on the peripheral auditory receptor. The mechanisms through which co-exposure to noise and styrene impairs hearing are complex as the slowly developing cochleotoxic process can be masked in the short-term by the rapid pharmacological effect on the central nervous system. The current investigation was therefore designed to delineate the auditory frequency range sensitive to noise, to styrene, and to noise and styrene combined.
View Article and Find Full Text PDFOccupational noise exposure can damage workers' hearing, particularly when combined with exposure to cochleotoxic chemicals such as styrene. Although styrene-induced cochlear impairments only become apparent after a long incubation period, the pharmacological impact of styrene on the central nervous system (CNS) can be rapidly measured by determining the threshold of the middle-ear acoustic reflex (MER) trigger. The aim of the study was to evaluate the effects of a noise (both continuous and impulse), and a low concentration of styrene [300ppm<(threshold limit value×10) safety factor] on the peripheral auditory receptor, and on the CNS in rats.
View Article and Find Full Text PDFUnlabelled: Noise is one of the most pervasive hazards in the workplace. Despite regulations and preventive measures, noise-induced hearing loss is common. The current reference test is pure-tone air-conduction audiometry (PTA), but this test cannot be used to detect early hearing loss.
View Article and Find Full Text PDF1. Toluene (TOL) is widely used in industry. Occupational exposure to TOL is commonly assessed using TOL in blood, hippuric acid and ortho-cresol.
View Article and Find Full Text PDFNeurotoxicol Teratol
September 2013
Toluene (Tol) is an organic solvent widely used in the industry. It is also abused as an inhaled solvent, and can have deleterious effects on hearing. Recently, it was demonstrated that Tol has both anticholinergic and antiglutamatergic effects, and that it also inhibits voltage-dependent Ca(2+) channels.
View Article and Find Full Text PDFPure-tone air-conduction audiometry (PTA) is the reference clinical test used in Europe and the United States to measure the extent of hearing loss. It is a subjective, behavioral test, which measures thresholds of hearing sensations and perceptions based on patient responses to frequency-specific pure-tone stimuli. PTA can detect hearing problems due to cochlear or retro-cochlear impairment, without identifying the source of the problem.
View Article and Find Full Text PDFObjectives: An animal model of cochlear implantation has been developed, and the hearing threshold was evaluated after different surgical procedures. The effect of perioperative systemic administration of erythropoietin on the hearing loss induced by cochlear implantation was tested.
Methods: Twenty-nine guinea pigs with normal hearing underwent implantation of a 254-microm-diameter array through a cochleostomy.
Presbycusis, or age-related hearing loss is a growing problem as the general population ages. In this longitudinal study, the influence of noise or styrene exposure on presbycusis was investigated in Brown Norway rats. Animals were exposed at 6 months of age, either to a band noise centered at 8 kHz at a Lex,8h = 85 dB (86.
View Article and Find Full Text PDFAnimal studies have shown that toluene can cause hearing loss and can exacerbate the effects of noise by inhibiting the middle ear acoustic reflex. In this investigation, carried out in Long-Evans rats, the tensor tympani tendon was cutoff and the stapedius muscle was electrocoagulated in one or both middle ears. Rat hearing was evaluated by measuring cubic distortion otoacoustic emissions (2f1-f2; f1 = 8000 Hz; f2 = 9600 Hz; f1/f2 = 1.
View Article and Find Full Text PDFHuman and animal studies have shown that certain aromatic solvents such as toluene can cause hearing loss and can exacerbate the effects of noise. The latter effects might be due to a modification of responses of motoneurons controlling the middle-ear acoustic reflex. In the present investigation, the audition of Long-Evans rats was evaluated by measuring cubic (2f1 - f2) distortion otoacoustic emissions (f1 = 8000 Hz; f2 = 9600 Hz; f1/f2 = 1.
View Article and Find Full Text PDFThe organophosphorus nerve agent soman is an irreversible cholinesterase (ChE) inhibitor that can produce long-lasting seizures and seizure-related brain damage (SRBD) in which acetylcholine and glutamate are involved. Since these neurotransmitters play a key-role in the auditory function, it was hypothesized that a hearing test may be an efficient way for detecting the central effects of soman intoxication. In the present study, distortion product otoacoustic emissions (DPOAEs), a non-invasive audiometric method, were used in rats administered with soman (70 μg/kg).
View Article and Find Full Text PDFToluene is a high-production industrial solvent, which can disrupt the auditory system in rats. However, toluene-induced hearing loss is species dependent. For instance, despite long-lasting exposures to high concentrations of aromatic solvent, no study has yet succeeded in causing convincing hearing loss in the guinea pig.
View Article and Find Full Text PDFNumerous laboratory-based data have shown the ability of toluene (Tol) to exacerbate noise-induced hearing loss. However, the mechanism responsible for the synergistic effects of a coexposure to noise and Tol has not yet been completely elucidated. Recent investigations in rats have focused on quantifying the anticholinergic effects of certain aromatic solvents and have demonstrated that these solvents can cancel the protective role played by the middle-ear reflex (MER).
View Article and Find Full Text PDF