The organizational principles of nephronal segments are based on longstanding anatomical and physiological attributes that are closely linked to the homeostatic functions of the kidney. Novel molecular approaches have recently uncovered layers of deeper signatures and states in tubular cells that arise at various timepoints on the spectrum between health and disease. For example, a dedifferentiated state of proximal tubular cells with mesenchymal stemness markers is frequently seen after injury.
View Article and Find Full Text PDFAcute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive recovery and progression to CKD. In particular, the regulatory role of miRNAs in AKI is poorly understood.
View Article and Find Full Text PDFThe progression of kidney disease varies among individuals, but a general methodology to quantify disease timelines is lacking. Particularly challenging is the task of determining the potential for recovery from acute kidney injury following various insults. Here, we report that quantitation of post-transcriptional adenosine-to-inosine (A-to-I) RNA editing offers a distinct genome-wide signature, enabling the delineation of disease trajectories in the kidney.
View Article and Find Full Text PDFUnlabelled: FGF23 via its coreceptor αKlotho (KL) provides critical control of phosphate metabolism, which is altered in rare and very common syndromes, however the spatial-temporal mechanisms dictating renal FGF23 functions remain poorly understood. Thus, developing approaches to modify specific FGF23-dictated pathways has proven problematic. Herein, wild type mice were injected with rFGF23 for 1, 4 and 12h and renal FGF23 bioactivity was determined at single cell resolution.
View Article and Find Full Text PDFThere is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states.
View Article and Find Full Text PDFAcute kidney injury (AKI) is an important contributor to the development of chronic kidney disease (CKD). There is a need to understand molecular mediators that drive either recovery or progression to CKD. In particular, the role of miRNA and its regulatory role in AKI is poorly understood.
View Article and Find Full Text PDFUnderstanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations.
View Article and Find Full Text PDFThere is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. However, comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measured dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states.
View Article and Find Full Text PDFThe human kidney is a complex organ with various cell types that are intricately organized to perform key physiological functions and maintain homeostasis. New imaging modalities, such as mesoscale and highly multiplexed fluorescence microscopy, are increasingly being applied to human kidney tissue to create single-cell resolution data sets that are both spatially large and multidimensional. These single-cell resolution high-content imaging data sets have great potential to uncover the complex spatial organization and cellular makeup of the human kidney.
View Article and Find Full Text PDFBackground: Translation shutdown is a hallmark of late-phase, sepsis-induced kidney injury. Methods for controlling protein synthesis in the kidney are limited. Reversing translation shutdown requires dephosphorylation of the eukaryotic initiation factor 2 (eIF2) subunit eIF2 α ; this is mediated by a key regulatory molecule, protein phosphatase 1 regulatory subunit 15A (Ppp1r15a), also known as GADD34.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
August 2022
Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI.
View Article and Find Full Text PDFKidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
March 2022
Purpose Of Review: Traditional histopathology of the kidney biopsy specimen has been an essential and successful tool for the diagnosis and staging of kidney diseases. However, it is likely that the full potential of the kidney biopsy has not been tapped so far. Indeed, there is now a concerted worldwide effort to interrogate kidney biopsy samples at the cellular and molecular levels with unprecedented rigor and depth.
View Article and Find Full Text PDFSingle-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
May 2021
The Indiana O'Brien Center for Advanced Microscopic Analysis is a National Institutes of Health (NIH) P30-funded research center dedicated to the development and dissemination of advanced methods of optical microscopy to support renal researchers throughout the world. The Indiana O'Brien Center was founded in 2002 as an NIH P-50 project with the original goal of helping researchers realize the potential of intravital multiphoton microscopy as a tool for understanding renal physiology and pathophysiology. The center has since expanded into the development and implementation of large-scale, high-content tissue cytometry.
View Article and Find Full Text PDFChronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes.
View Article and Find Full Text PDFThe gene expression signature of the human kidney interstitium is incompletely understood. The cortical interstitium (excluding tubules, glomeruli, and vessels) in reference nephrectomies ( = 9) and diabetic kidney biopsy specimens ( = 6) was laser microdissected (LMD) and sequenced. Samples underwent RNA sequencing.
View Article and Find Full Text PDFBackground: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN).
View Article and Find Full Text PDFSepsis is a dynamic state that progresses at variable rates and has life-threatening consequences. Staging patients along the sepsis timeline requires a thorough knowledge of the evolution of cellular and molecular events at the tissue level. Here, we investigated the kidney, an organ central to the pathophysiology of sepsis.
View Article and Find Full Text PDFComprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled.
View Article and Find Full Text PDFFibroblast Growth Factor 23 (FGF23) is a bone-derived hormone that reduces kidney phosphate reabsorption and 1,25(OH)2 vitamin D synthesis via its required co-receptor alpha-Klotho. To identify novel genes that could serve as targets to control FGF23-mediated mineral metabolism, gene array and single-cell RNA sequencing were performed in wild type mouse kidneys. Gene array demonstrated that heparin-binding EGF-like growth factor (HBEGF) was significantly up-regulated following one-hour FGF23 treatment of wild type mice.
View Article and Find Full Text PDFGene expression analysis of human kidney tissue is an important tool to understand homeostasis and disease pathophysiology. Increasing the resolution and depth of this technology and extending it to the level of cells within the tissue is needed. Although the use of single nuclear and single cell RNA sequencing has become widespread, the expression signatures of cells obtained from tissue dissociation do not maintain spatial context.
View Article and Find Full Text PDF