Publications by authors named "Pierre Bonville"

The development of rapid, sensitive, portable and inexpensive early diagnostic techniques is a real challenge in the fields of health, defense and in the environment. The current global pandemic has also shown the need for such tests. The World Health Organization has defined ASSURED criteria (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free and deliverable to end-users) that field diagnostic tests must fulfill, which proves the real need in terms of public health.

View Article and Find Full Text PDF

Inexpensive simple medical devices allowing fast and reliable counting of whole cells are of interest for diagnosis and treatment monitoring. Magnetic-based labs on a chip are one of the possibilities currently studied to address this issue. Giant magnetoresistance (GMR) sensors offer both great sensitivity and device integrability with microfluidics and electronics.

View Article and Find Full Text PDF

Assembly of nanoparticles into supracrystals provides a class of materials with interesting optical and magnetic properties. However, supracrystals are mostly obtained from hydrophobic particles and therefore cannot be manipulated in aqueous systems, limiting their range of applications. Here, we show that hydrophobic-shaped supracrystals self-assembled from 8.

View Article and Find Full Text PDF

Here, it is shown that binary superlattices of Co/Ag nanocrystals with the same size, surface coating, differing by their type of crystallinity are governed by Co-Co magnetic interactions. By using 9 nm amorphous-phase Co nanocrystals and 4 nm polycrystalline Ag nanocrystals at 25 °C, triangle-shaped NaCl-type binary nanocrystal superlattices are produced driven by the entropic force, maximizing the packing density. By contrast, using ferromagnetic 9 nm single domain (hcp) Co nanocrystals instead of amorphous-phase Co, dodecagonal quasicrystalline order is obtained, together with less-packed phases such as the CoAg13 (NaZn13-type), CoAg (AuCu-type), and CoAg3 (AuCu3-type) structures.

View Article and Find Full Text PDF

The dynamical magnetic correlations in Tb2Ti2O7 have been investigated using polarized inelastic neutron scattering. Dispersive excitations are observed, emerging from pinch points in reciprocal space and characterized by an anisotropic spectral weight. Anomalies in the crystal field and phonon excitation spectrum at Brillouin zone centers are also reported.

View Article and Find Full Text PDF

Uniform magnetic nanoneedles have been prepared by hydrogen reduction of elongated nanoarchitectures. These precursors are as-prepared or cobalt-coated aggregates of highly oriented haematite nanocrystals (∼5 nm). The final materials are flattened nanoneedles formed by chains of assembled Fe or FeCo single-domain nanocrystals.

View Article and Find Full Text PDF

The magnetic, electronic, and Mössbauer spectral properties of [Fe(2)L(μ-OAc)(2)]ClO(4), 1, where L is the dianion of the tetraimino-diphenolate macrocyclic ligand, H(2)L, indicate that 1 is a class III mixed valence iron(II∕III) complex with an electron that is fully delocalized between two crystallographically inequivalent iron sites to yield a [Fe(2)](V) cationic configuration with a S(t) = 9∕2 ground state. Fits of the dc magnetic susceptibility between 2 and 300 K and of the isofield variable-temperature magnetization of 1 yield an isotropic magnetic exchange parameter, J, of -32(2) cm(-1) for an electron transfer parameter, B, of 950 cm(-1), a zero-field uniaxial D(9∕2) parameter of -0.9(1) cm(-1), and g = 1.

View Article and Find Full Text PDF

Passivated iron nanoparticles (10-30 nm) have been synthesized by laser pyrolysis of a mixture of iron pentacarbonyl and ethylene vapors followed by controlled oxidation. The nanoparticles show a well-constructed iron-iron oxide core-shell structure, in which the thickness and nature (structure similar to maghemite, gamma-Fe2O3) of the shell is found to be independent of the initial conditions. On the other hand, the composition of the core is found to change with the particle size from the alpha-Fe structure to a highly disordered Fe phase (probably containing C atoms in its structure).

View Article and Find Full Text PDF

Mössbauer-effect and microwave absorption experimental evidence unambiguously demonstrates the presence of slow, approximately 450 MHz, tunneling of magnetic europium between four equivalent sites in Eu8Ga16Ge30, a stoichiometric clathrate. Remarkably, six of the eight europium atoms, or 11% of the constituents in this solid, tunnel between these four sites separated by 0.55 A.

View Article and Find Full Text PDF

A tungstated zirconia (WZ) catalyst with iron promoter used for the conversion of n-pentane into isopentane has been characterized by Mössbauer spectroscopy. The Mössbauer spectra have been recorded in zero magnetic field in the temperature range 0.05-295 K and with a magnetic field up to 7 T between 4.

View Article and Find Full Text PDF

Pharmaceutical grade magnetic colloidal dispersions have been prepared from iron alloys synthesized by laser pyrolysis. The colloids were obtained by simultaneous dispersion and coating of the particles with dextran in a strong alkaline solution. Both powders and dispersions have been analyzed in terms of microstructural characteristics, chemical composition and magnetic properties.

View Article and Find Full Text PDF

Superoxide reductase (SOR) is an Fe protein that catalyzes the reduction of superoxide to give H(2)O(2). Recently, the mutation of the Glu47 residue into alanine (E47A) in the active site of SOR from Desulfoarculus baarsii has allowed the stabilization of an iron-peroxo species when quickly reacted with H(2)O(2) [Mathé et al. (2002) J.

View Article and Find Full Text PDF