Publications by authors named "Pierre Baconnier"

Cardiovascular monitoring is of great importance in pharmacology but there is a lack of convenient non-invasive alternatives. Hence, we aim to evaluate the relevance of inductive plethysmography (IP) in preclinical cardiac studies. An IP system was specifically designed for rat.

View Article and Find Full Text PDF

The coordination of respiration and swallowing involves an interaction between two central pattern generators, and this can be disturbed in some pathological situations. To better understand this interaction, we aim in this study to characterize the effect of a spontaneous swallow on the breathing pattern. This is first realized using Respiratory Inductive Plethysmography on 11 healthy subjects.

View Article and Find Full Text PDF

We investigate Respiratory Inductive Plethysmography (RIP) to estimate cardiac activity from thoracic volume variations and study cardio-respiratory interactions. The objective of the present study is to evaluate the ability of RIP to monitor stroke volume (SV) variations, with reference to impedance cardiography (IMP). Five healthy volunteers in seated and supine positions were asked to blow into a manometer in order to induce significant SV decreases.

View Article and Find Full Text PDF

This paper presents a contribution to the definition of the interfaces required to perform heterogeneous model integration in the context of integrative physiology. A formalization of the model integration problem is proposed and a coupling method is presented. The extension of the classic Guyton model, a multi-organ, integrated systems model of blood pressure regulation, is used as an example of the application of the proposed method.

View Article and Find Full Text PDF

To study the interaction of forces that produce chest wall motion, we propose a model based on the lever system of Hillman and Finucane (J Appl Physiol 63(3):951-961, 1987) and introduce some dynamic properties of the respiratory system. The passive elements (rib cage and abdomen) are considered as elastic compartments linked to the open air via a resistive tube, an image of airways. The respiratory muscles (active) force is applied to both compartments.

View Article and Find Full Text PDF

Background: Analysis of breath-to-breath variability of respiratory characteristics provides information on the respiratory control. In infants, the control of end-expiratory lung volume (EELV) is active and complex, and it can be altered by respiratory disease. The pattern of EELV variability may reflect the behavior of this regulatory system.

View Article and Find Full Text PDF

Background: Monitoring the mechanics of breathing in patients with advanced chronic obstructive lung diseases prior to lung transplantation is useful to characterize changes in the mechanical properties of the lungs. On-line methods of monitoring immediately process the data for clinical decisions. However, the few available methods are so far limited to monitor respiratory mechanics in ventilator-dependent patients.

View Article and Find Full Text PDF

The purpose of this study is to investigate the potential of the ensemble empirical mode decomposition (EEMD) to extract cardiogenic oscillations from inductive plethysmography signals in order to measure cardiac stroke volume. First, a simple cardio-respiratory model is used to simulate cardiac, respiratory, and cardio-respiratory signals. Second, application of empirical mode decomposition (EMD) to simulated cardio-respiratory signals demonstrates that the mode mixing phenomenon affects the extraction performance and hence also the cardiac stroke volume measurement.

View Article and Find Full Text PDF

To study the mechanical interactions between heart, lungs and thorax, we propose a mathematical model combining a ventilatory neuromuscular model and a model of the cardiovascular system, as described by Smith et al. (Smith, Chase, Nokes, Shaw & Wake 2004 Med. Eng.

View Article and Find Full Text PDF

Respiratory inductance plethysmography (RIP) is a method for respiratory measurements particularly attractive in infants because it is noninvasive and it does not interfere with the airway. RIP calibration remains controversial in neonates, and is particularly difficult in infants with thoraco-abdominal asynchrony or with ventilatory assist. The objective of this study was to evaluate a new RIP calibration method in preterm infants either without respiratory disease, with thoraco-abdominal asynchrony, or with ventilatory support.

View Article and Find Full Text PDF

We present the current state of the development of the SAPHIR project (a Systems Approach for PHysiological Integration of Renal, cardiac and respiratory function). The aim is to provide an open-source multi-resolution modelling environment that will permit, at a practical level, a plug-and-play construction of integrated systems models using lumped-parameter components at the organ/tissue level while also allowing focus on cellular- or molecular-level detailed sub-models embedded in the larger core model. Thus, an in silico exploration of gene-to-organ-to-organism scenarios will be possible, while keeping computation time manageable.

View Article and Find Full Text PDF

We present progress on a comprehensive, modular, interactive modeling environment centered on overall regulation of blood pressure and body fluid homeostasis. We call the project SAPHIR, for "a Systems Approach for PHysiological Integration of Renal, cardiac, and respiratory functions". The project uses state-of-the-art multi-scale simulation methods.

View Article and Find Full Text PDF

Thoracocardiography approach pretends to non-invasively monitor stroke volume by inductive plethysmographic recording of ventricular volume curves by a transducer placed on the chest. The purpose of this study was to investigate the potential of thoracocardiography to estimate stroke volumes while apnea with open glottis. We hypothesized that, when glottis is open, stroke volumes would be better estimated if airways flow curves were taken into account.

View Article and Find Full Text PDF

The aim of this work was to evaluate the goodness of fit of a signal issued of the respiratory inductance plethysmography (RIP) derivative to the airflow signal during rest, voluntary hyperventilation, and recovery. RIP derivative signal was filtered with an adjusted filter based on each subject airflow signal (pneumotachography). For each subject and for each condition (rest, voluntary hyperventilation, and recovery) comparisons were performed between the airflow signal and the RIP derivative signal filtered with an adjusted filter obtained either on rest signal or on the studied part of the signals (voluntary hyperventilation or recovery).

View Article and Find Full Text PDF

In order to evaluate the feasibility of a device scoring classes of hemorrhagic shock, a multivariate analysis of physiological data collected on swine enduring continuous blood loss was conducted. Raw data sampled at up to 500 Hz were first preprocessed and used for features extraction over period of 1 mm. An expert scored all these physiological features, into one of the four classes of hemorrhagic shock: none, compensated, uncompensated and irreversible.

View Article and Find Full Text PDF

Human ventilation is aperiodic, exhibiting a breath-by-breath variability and a complexity of which the characteristics may be interesting physiologically and clinically. In the present study, we tested the ability of respiratory inductive plethysmography (RIP) to describe these properties. Indeed, RIP does not have the effects on ventilation described with mouthpiece measurements.

View Article and Find Full Text PDF

In humans, lung ventilation exhibits breath-to-breath variability and dynamics that are nonlinear, complex, sensitive to initial conditions, unpredictable in the long-term, and chaotic. Hypercapnia, as produced by the inhalation of a CO(2)-enriched gas mixture, stimulates ventilation. Hypocapnia, as produced by mechanical hyperventilation, depresses ventilation in animals and in humans during sleep, but it does not induce apnea in awake humans.

View Article and Find Full Text PDF

Deglutition disorders can occur at any age but are especially prevalent in the elderly. The resulting morbidity and mortality are being recognized as major geriatric health issues, Because of difficulties in studying swallowing in the frail elderly, a new, non-invasive, user-friendly, bedside technique has been developed. Ideally suited to such patients, this tool, an intermediary between purely instrumental and clinical methods, combines respiratory inductance plethysmography (RIP) and the computer to detect swallowing automatically, Based on an automated analysis of the airflow estimated by the RIP-derived signal, this new tool was evaluated according to its capacity to detect clinical swallowing from among the 1643 automatically detected respiratory events, This evaluation used contingency tables and Receiver Operator Characteristic (ROC) curves, Results were all significant (chi2(1,n=1643)>100, p<0.

View Article and Find Full Text PDF

Purpose: Evaluation of a protocol of activation-deactivation of alarm soundings on noninvasive mean arterial pressure (MAP) monitoring.

Materials And Methods: 103 patients were analyzed. Alarm soundings on noninvasive MAP were either activated (group A) or inactivated (group NA) according to a protocol based on patient's hemodynamic status.

View Article and Find Full Text PDF

This paper proposes a program for continuous estimation of respiratory mechanics parameters in ventilated patients. This program can be used with any ventilator providing airway pressure and flow signals without additional equipment. Overall breathing resistance, dynamic elastance (E) and positive end expiratory pressure (P(0)) are periodically estimated by multiple linear regression on selected parts of breathing cycles.

View Article and Find Full Text PDF

Misunderstanding of the dynamical behavior of the ventilatory system, especially under assisted ventilation, may explain the problems encountered in ventilatory support monitoring. Proportional assist ventilation (PAV) that theoretically gives a breath by breath assistance presents instability with high levels of assistance. We have constructed a mathematical model of interactions between three objects: the central respiratory pattern generator modelled by a modified Van der Pol oscillator, the mechanical respiratory system which is the passive part of the system and a controlled ventilator that follows its own law.

View Article and Find Full Text PDF

The instantaneous pressure applied by the respiratory muscles [Pmus(t)] of a patient under ventilatory support may be continuously assessed with the help of a model of the passive respiratory system updated cycle by cycle. Inspiratory activity (IA) is considered present when Pmus goes below a given threshold. In six patients, we compared IA with (i) inspiratory activity (IAref) obtained from esophageal pressure and diaphragmatic EMG and (ii) that (IAvent) detected by the ventilator.

View Article and Find Full Text PDF

We studied the changes in lung and upper airway mechanics in adult human subjects with obstructive sleep apnea/hypopnea syndrome (OSAHS) during wakefulness, sleep, and at arousal from sleep. We used two numerical methods that we have previously developed specifically for dealing with inspiratory flow limitation during sleep: the modified Mead-Whittenberger method, and information-weighted histograms obtained using recursive least squares. Full polysomnography including esophageal pressure and airflow measurements was performed in seven men with OSAHS (respiratory disturbance index: 55.

View Article and Find Full Text PDF