Publications by authors named "Pierre Alain Carrupt"

Background: Epilepsy is a chronic neurological disorder affecting more than 50 million people worldwide, of whom 80% live in low- and middle-income countries. Due to the limited availability of antiseizure drugs (ASDs) in these countries, medicinal plants are the first-line treatment for most epilepsy patients. In Cameroon, a decoction of Cyperus articulatus L.

View Article and Find Full Text PDF

Natural products are generally ingested as part of traditional herbal decoctions or in the current diet. However, in natural product research, the bioavailability of secondary metabolites is often poorly investigated. In this work, a systematic study was carried out in order to highlight the physicochemical parameters that mainly influence the passive intestinal absorption of natural products.

View Article and Find Full Text PDF

The parallel artificial membrane permeability assay (PAMPA) is a high-throughput screening (HTS) technique developed to predict passive permeability through numerous different biological membranes, such as the gastrointestinal tract (GIT), the blood brain barrier (BBB), and the dermal layer. PAMPA is based on an artificial membrane, such as hexadecane (HDM), which separates two compartments (i.e.

View Article and Find Full Text PDF

In recent years, sirtuins (SIRTs), members of histone deacetylases (HDACs) class III, have been found to modulate cellular processes related to the development of human aging-related pathologies (i.e. cancer, neurodegeneration, metabolic disorders).

View Article and Find Full Text PDF

The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult.

View Article and Find Full Text PDF

The study describes bioactive compounds as inhibitors of acetylcholinesterase (AChE), from the stem bark extract of Montrouziera cauliflora, selected among 19 dichloromethane extracts from Clusiaceae species. Our work focused on the development of an original normal phase HPLC microfractionation strategy to rapidly assess highly active zones from this crude active non-polar plant extract. Two different microfraction collection methods were evaluated for the assessment of the AChE inhibition.

View Article and Find Full Text PDF

Lipophilicity is of crucial importance in many fields including pharmaceutical, environmental, cosmetic and food industries. Whereas different experimental strategies have been developed for rapid lipophilicity determination of new chemical entities, log P determination of highly lipophilic compounds is always challenging. In this study, three published chromatographic methods have been compared on a series of phenylalkanoic acids including the pro-perfume HaloscentD (HD-C12).

View Article and Find Full Text PDF

At the early drug discovery stage, the high-throughput parallel artificial membrane permeability assay is one of the most frequently used in vitro models to predict transcellular passive absorption. While thousands of new chemical entities have been screened with the parallel artificial membrane permeability assay, in general, permeation properties of natural products have been scarcely evaluated. In this study, the parallel artificial membrane permeability assay through a hexadecane membrane was used to predict the passive intestinal absorption of a representative set of frequently occurring natural products.

View Article and Find Full Text PDF

Sirtuins (SIRTs) are a family of enzymes able to catalyze the deacetylation of the N-acetyl lysines of both histone and non-histone substrates. Inhibition of SIRTs catalytic activity was recently reported in the literature as being beneficial in human diseases, with very promising applications in cancer therapy and enzymatic neurodegeneration. By combining a structure-based virtual screening of the Specs database with cell-based assays, we identified the 5-benzylidene-hydantoin as new scaffold for the inhibition of SIRT2 catalytic activity.

View Article and Find Full Text PDF
Article Synopsis
  • HDAC6 is a special protein that helps control other proteins and is linked to brain diseases and flu infections.
  • Scientists studied how HDAC6 interacts with another protein called ubiquitin using computer simulations to understand its behavior better.
  • They found some key differences between HDAC6 and a similar protein, which could help in creating new drugs specifically targeting HDAC6.
View Article and Find Full Text PDF

Background And Purpose: An influx drug/proton antiporter of unknown structure has been functionally demonstrated at the blood-brain barrier. This transporter, which handles some psychoactive drugs like diphenhydramine, clonidine, oxycodone, nicotine and cocaine, could represent a new pharmacological target in drug addiction therapy. However, at present there are no known drugs/inhibitors that effectively inhibit/modulate this transporter in vivo.

View Article and Find Full Text PDF

The Parallel Artificial Membrane Permeability Assay (PAMPA) is a well-known high throughput screening (HTS) technique for predicting in vivo passive absorption. In this technique, two compartments are separated by an artificial membrane that mimics passive permeability through biological membranes such as the dermal layer, the gastrointestinal tract (GIT), and the blood brain barrier (BBB). In the present study, a hexadecane artificial membrane (HDM)-PAMPA was used to predict the binding of compounds towards the human plasma using a mixture of human serum albumin (HSA) and alpha-1-acid glycoprotein (AGP).

View Article and Find Full Text PDF

The multifactorial nature of Alzheimer's disease calls for the development of multitarget agents addressing key pathogenic processes. To this end, by following a docking-assisted hybridization strategy, a number of aminocoumarins were designed, prepared, and tested as monoamine oxidases (MAOs) and acetyl- and butyryl-cholinesterase (AChE and BChE) inhibitors. Highly flexible N-benzyl-N-alkyloxy coumarins 2-12 showed good inhibitory activities at MAO-B, AChE, and BChE but low selectivity.

View Article and Find Full Text PDF

A rapid method for the simultaneous determination of the in vitro activity of the 10 major human liver UDP-glucuronosyltransferase (UGT) enzymes was developed based on the cocktail approach. Specific substrates were first selected for each UGT: etoposide for UGT1A1, chenodeoxycholic acid for UGT1A3, trifluoperazine for UGT1A4, serotonin for UGT 1A6, isoferulic acid for UGT1A9, codeine for UGT2B4, azidothymidine for UGT2B7, levomedetomidine for UGT2B10, 4-hydroxy-3-methoxymethamphetamine for UGT2B15 and testosterone for UGT2B17. Optimal incubation conditions, including time-based experiments on cocktail metabolism in pooled HLMs that had been performed, were then investigated.

View Article and Find Full Text PDF

Over the past decade, human histone deacetylases (HDACs) have become interesting as therapeutic targets because of the benefits that their modulation might provide in aging-related disorders. Recently, studies using crystallography and computational chemistry have provided information on the structure and conformational changes related to HDAC-mediated recognition events. Through the description of the key mass and one-off movements observed in metal-dependent HDACs, here we highlight the impact of flexibility on drug-binding affinity and specificity.

View Article and Find Full Text PDF

Epigenetic enzymes such as histone deacetylases play a crucial role in the development of ageing-related diseases. Among the 18 histone deacetylase isoforms found in humans, class III histone deacetylases, also known as sirtuins, seem to be promising targets for treating neurodegenerative conditions. Recently, Psychotria alkaloids, mainly monoterpene indoles, have been reported for their inhibitory properties against central nervous system cholinesterase and monoamine oxidase proteins.

View Article and Find Full Text PDF

The detection and early identification of natural products (NPs) for dereplication purposes require efficient, high-resolution methods for the profiling of crude natural extracts. This task is difficult because of the high number of NPs in these complex biological matrices and because of their very high chemical diversity. Metabolite profiling using ultra-high pressure liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HR-MS) is very efficient for the separation of complex mixtures and provides molecular formula information as a first step in dereplication.

View Article and Find Full Text PDF

In this study, a total of 22 flavonoids were tested for their HDAC inhibitory activity using fluorimetric and BRET-based assays. Four aurones were found to be active in both assays and showed IC50 values below 20 μM in the enzymatic assay. Molecular modelling revealed that the presence of hydroxyl groups was responsible for good compound orientation within the isoenzyme catalytic site and zinc chelation.

View Article and Find Full Text PDF

UV-C radiation is known to induce metabolic modifications in plants, particularly to secondary metabolite biosynthesis. To assess these modifications from a global and untargeted perspective, the effects of the UV-C radiation of the leaves of three different model plant species, Cissus antarctica Vent. (Vitaceae), Vitis vinifera L.

View Article and Find Full Text PDF

The parallel artificial membrane permeability assay (PAMPA) is a high-throughput screening (HTS) method that is widely used to predict in vivo passive permeability through biological barriers, such as the skin, the blood brain barrier (BBB) and the gastrointestinal tract (GIT). The PAMPA technique has also been used to predict the dissociation constant (Kd) between a compound and human serum albumin (HSA) while disregarding passive permeability. Furthermore, the assay is based on the use of two separate 5-point kinetic experiments, which increases the analysis time.

View Article and Find Full Text PDF

Ginkgolic acids and urushiols are natural alkylphenols known for their mutagenic, carcinogenic and genotoxic potential. However, the mechanism of toxicity of these compounds has not been thoroughly elucidated so far. Considering that the SIRT inhibitory potential of anacardic acids has been hypothesized by in silico techniques, we herein demonstrated through both in vitro and computational methods that structurally related compounds such as ginkgolic acids and urushiols are able to modulate SIRT activity.

View Article and Find Full Text PDF

A capillary isoelectric focusing (cIEF) method was developed for the determination of the ionization constants (pKa) of small molecules. Two approaches used to decrease the electroosmotic flow (EOF) were compared: (i) a hydroxypropylcellulose (HPC) coated capillary in aqueous medium and (ii) the addition of glycerol to act as a viscosifying agent. The cIEF method with the glycerol medium was selected, and the ionization constants of 22 basic and 21 acidic compounds, including 15 pharmaceutical drugs, were determined, resulting in pKa values from 3.

View Article and Find Full Text PDF

The multidrug resistance protein 1 (MRP1) is involved in multidrug resistance of cancer cells by mediating drug efflux out of cells, often in co-transport with glutathione (GSH). GSH efflux mediated by MRP1 can be stimulated by verapamil. In cells overexpressing MRP1, we have previously shown that verapamil induced a huge intracellular GSH depletion which triggered apoptosis of the cells.

View Article and Find Full Text PDF

Context: Plants of the genus Garcinia (Clusiaceae) are traditionally used to relieve stomachaches, toothaches, and as a chew stick.

Objective: In order to determine which compounds were responsible for these activities, a phytochemical investigation of the fruits and leaves of Garcinia preussii Engl. was pursued.

View Article and Find Full Text PDF

The molecular lipophilicity potential (MLP) is a well-established method to calculate and visualize lipophilicity on molecules. We are here introducing a new computational tool named MLP Tools, written in the programming language Python, and conceived as a free plugin for the popular open source molecular viewer PyMOL. The plugin is divided into several sub-programs which allow the visualization of the MLP on molecular surfaces, as well as in three-dimensional space in order to analyze lipophilic properties of binding pockets.

View Article and Find Full Text PDF