Publications by authors named "Pierre Aeby"

The SENS-IS test protocol for the in vitro detection of sensitizers is based on a reconstructed human skin model (Episkin) as the test system and on the analysis of the expression of a large panel of genes. Its excellent performance was initially demonstrated with a limited set of test chemicals. Further studies (described here) were organized to confirm these preliminary results and to obtain a detailed statistical analysis of the predictive capacity of the assay.

View Article and Find Full Text PDF

Analysis of genes modulated during the sensitization process either on mice (LLNA) or human (blisters) combined with data mining has allowed the definition of a comprehensive panel of sensitization biomarkers. This set of genes includes already identified markers such as the ARE family and others not yet associated with the sensitization process (the so-called SENS-IS gene subset). The expression of this set of genes has been measured on reconstituted human epidermis models (Episkin) exposed to various sensitizers and non-sensitizers.

View Article and Find Full Text PDF

Several human skin models employing primary cells and immortalized cell lines used as monocultures or combined to produce reconstituted 3D skin constructs have been developed. Furthermore, these models have been included in European genotoxicity and sensitization/irritation assay validation projects. In order to help interpret data, Cosmetics Europe (formerly COLIPA) facilitated research projects that measured a variety of defined phase I and II enzyme activities and created a complete proteomic profile of xenobiotic metabolizing enzymes (XMEs) in native human skin and compared them with data obtained from a number of in vitro models of human skin.

View Article and Find Full Text PDF

Characterisation of skin sensitisation potential is a key endpoint for the safety assessment of cosmetic ingredients especially when significant dermal exposure to an ingredient is expected. At present the mouse local lymph node assay (LLNA) remains the 'gold standard' test method for this purpose however non-animal test methods are under development that aim to replace the need for new animal test data. COLIPA (the European Cosmetics Association) funds an extensive programme of skin sensitisation research, method development and method evaluation and helped coordinate the early evaluation of the three test methods currently undergoing pre-validation.

View Article and Find Full Text PDF

Understanding the mechanistic aspects involved in sensitization by chemicals will help to develop relevant preventive strategies. Many potential sensitizers are not directly immunogenic but require activation outside or inside the skin by nonenzymatic oxidation (prehaptens) or metabolic transformation (prohaptens) prior to being able to induce an immune response. This necessary activation step has not yet been actively integrated into a cell line-based prediction approach.

View Article and Find Full Text PDF

Allergic contact dermatitis is a delayed-type hypersensitivity reaction induced by small reactive chemicals (haptens). Currently, the sensitising potential and potency of new chemicals is usually characterised using data generated via animal studies, such as the local lymph node assay (LLNA). There are, however, increasing public and political concerns regarding the use of animals for the testing of new chemicals.

View Article and Find Full Text PDF

The number of studies involved in the development of in vitro skin sensitization tests has increased since the adoption of the EU 7th amendment to the cosmetics directive proposing to ban animal testing for cosmetic ingredients by 2013. Several studies have recently demonstrated that sensitizers induce a relevant up-regulation of activation markers such as CD86, CD54, IL-8 or IL-1beta in human myeloid cell lines (e.g.

View Article and Find Full Text PDF

Skin is a target of allergic reactions to aromatic amine hair dye precursors, such as p-phenylenediamine (PPD). As conversion of PPD on or in the skin is expected to be required for the induction of allergic contact dermatitis, we analyzed the role of oxidation and N-acetylation as major transformation steps. PPD and its oxidative and N-acetylated derivatives were tested for their sensitizing potential in vitro using a dendritic cell (DC) activation assay and in vivo using the local lymph node assay (LLNA).

View Article and Find Full Text PDF

The human myeloid cell line U937 was evaluated as an in vitro test system to identify contact sensitizers in order to develop alternatives to animal tests for the cosmetic industry. Specific culture conditions (i.e.

View Article and Find Full Text PDF

Due to increasing public concern and the adoption of the 7th Amendment to the Cosmetics Directive, the development of in vitro models for predicting the sensitizing potential of chemicals is receiving widespread interest. This overview describes some of our current research projects exploiting known molecular and cellular events occurring during the acquisition of skin sensitization. Once combined in a test battery, these different in vitro approaches are expected to provide reliable methods for the detection of contact allergens.

View Article and Find Full Text PDF

Development of in vitro models to identify sensitizing chemicals receives public interest since animal testing should be avoided whenever possible. In this article we analyze two essential properties of sensitizing chemicals: skin penetration and dendritic cell (DC) activation. Activation of immature DC derived from peripheral blood monocytes was evaluated by flow cytometric analysis of CD86 positive cells and quantitative measurement of interleukin-1beta and aquaporin P3 gene expression.

View Article and Find Full Text PDF