The discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how are structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory, we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E.
View Article and Find Full Text PDFThe discovery of thermophilic and hyperthermophilic microorganisms, thriving at environmental temperatures near or above 100 °C, has revolutionized our ideas about the upper temperature limit at which life can exist. The characterization of (hyper)thermostable proteins has broadened our understanding and presented new opportunities for solving one of the most challenging problems in biophysics: how is structural stability and biological function maintained at high temperatures where "normal" proteins undergo dramatic structural changes? In our laboratory we have purified and studied many thermostable and hyperthermostable proteins in an attempt to determine the molecular basis of heat stability. Here, we present methods to express such proteins and enzymes in E.
View Article and Find Full Text PDFGenerating new carbon-carbon (C-C) bonds in an enantioselective way is one of the big challenges in organic synthesis. Aldolases are a natural tool for stereoselective C-C bond formation in a green and sustainable way. This review will focus on thermophilic aldolases in general and on dihydroxyacetone phosphate-dependent aldolases in particular.
View Article and Find Full Text PDF