Publications by authors named "Pierpaola Davalli"

Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet.

View Article and Find Full Text PDF

It's known that a magnesium (Mg)-deficient diet is associated with an increased risk of osteoporosis. The aim of this work is to investigate, by a histological approach, the effects of a Mg-deprived diet on the bone of 8-weeks-old C57BL/6J male mice. Treated and control mice were supplied with a Mg-deprived or normal diet for 8 weeks, respectively.

View Article and Find Full Text PDF

Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate.

View Article and Find Full Text PDF

The hematopoietic U937 cells are able to differentiate into monocytes, macrophages, or osteoclasts when stimulated, respectively, with vitamin D3 (VD3), phorbol 12-myristate 13-acetate (PMA) or PMA plus VD3. We have previously demonstrated that magnesium (Mg) strongly potentiates the osteoclastic differentiation of U937 cells. In this study, we investigated whether such an effect may be ascribed to a capacity of Mg to modulate the monocyte differentiation of U937 cells and/or to an ability of Mg and VD3 to act directly and independently on the early phases of the osteoclastic differentiation.

View Article and Find Full Text PDF

Mitotic perturbations frequently lead to chromosome mis-segregation that generates genome instability, thereby triggering tumor onset and/or progression. Error-free mitosis depends on fidelity-monitoring systems that ensure the temporal and spatial coordination of chromosome segregation. Recent investigations are focused on mitotic DNA damage response (DDR) and chromosome mis-segregations with the aim of developing more efficient anti-cancer therapies.

View Article and Find Full Text PDF

Clusterin (CLU) is a stress-activated glycoprotein, whose expression is altered both in inflammation and cancer. Previously, we showed that abrogation of CLU expression in cancer-prone mice (TRAMP) results in the enhancement of tumor spreading and homing, concomitant with an enhanced expression of NF-B. In the present paper, we carried out an extensive experimental work by utilizing microarray gene expression data, as well as and models of prostate cancer (PCa).

View Article and Find Full Text PDF

Magnesium (Mg) is crucial for bone health. Low concentrations of Mg inhibit the activity of osteoblasts while promoting that of osteoclasts, with the final result of inducing osteopenia. Conversely, little is known about the effects of high concentrations of extracellular Mg on osteoclasts and osteoblasts.

View Article and Find Full Text PDF

Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents.

View Article and Find Full Text PDF

The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process.

View Article and Find Full Text PDF

The human clusterin (CLU) gene codes for several mRNAs characterized by different sequences at their 5' end. We investigated the expression of two CLU mRNAs, called CLU 1 and CLU 2, in immortalized (PNT1a) and tumorigenic (PC3 and DU145) prostate epithelial cells, as well as in normal fetal fibroblasts (WI38) following the administration of the epigenetic drugs 5-aza-2'-deoxycytidine (AZDC) and trichostatin A (TSA) given either as single or combined treatment (AZDC-TSA). Our experimental evidences show that: a) CLU 1 is the most abundant transcript variant.

View Article and Find Full Text PDF

Rationale: Clusterin expression may change in various human malignancies, including lung cancer. Patients with resectable non-small cell lung cancer (NSCLC), including adenocarcinoma, have a poor prognosis, with a relapse rate of 30-50% within 5 years. Nuclear factor kB (Nf-kB) is an intracellular protein involved in the initiation and progression of several human cancers, including the lung.

View Article and Find Full Text PDF

Numerous evidences from prevention studies in humans, support the existence of an association between green tea polyphenols consumption and a reduced cancer risk. Prostate cancer is one of the most frequently diagnosed male neoplasia in the Western countries, which is in agreement with this gland being particularly vulnerable to oxidative stress processes, often associated with tumorigenesis. Tea polyphenols have been extensively studied in cell culture and animal models where they inhibited tumor onset and progression.

View Article and Find Full Text PDF

Considering its long latency, prostate cancer (PCa) represents an ideal target for chemoprevention strategies. Green tea extract (GTE) has been proved to be one of the most promising natural substances capable of inhibiting PCa progression in animal models (transgenic adenocarcinoma of mouse prostate), as well as in humans. However, the cellular targets of the GTE action are mostly unknown.

View Article and Find Full Text PDF

Among endocrine disruptors, the xenoestrogen bisphenol A (BPA) deserves particular attention due to widespread human exposure. Besides hormonal effects, BPA has been suspected to be involved in breast and prostate carcinogenesis, which share similar estrogen-related mechanisms. We previously demonstrated that administration of BPA to female mice results in the formation of DNA adducts and proteome alterations in the mammary tissue.

View Article and Find Full Text PDF

Green tea catechins (GTCs) exert chemopreventive effects in many cancer models. Several studies implicate the DNA synthesis marker minichromosome maintenance protein 7 (MCM7) in prostate cancer progression, growth and invasion; representing a novel therapeutic target. In this study, we investigated the effect of GTCs on MCM7 expression in the transgenic adenocarcinoma mouse prostate model (TRAMP).

View Article and Find Full Text PDF

Rationale: Cigarette smoke causes injury to lung fibroblasts, partly by means of oxidative stress, and oxidative stress can lead to various lung diseases, such as chronic obstructive pulmonary disease. Clusterin is a widely distributed protein with many functions, including cellular protection in response to oxidative stress.

Objectives: To determine whether clusterin is involved in the defense of the lung against cigarette smoke, we investigated the effects of cigarette smoke extract on clusterin expression and its protective effect, if any, against oxidative stress.

View Article and Find Full Text PDF

We previously found that human prostate cancer (CaP) progression is accompanied by differential expression of a panel of 8 informative genes, some of which are metabolically related. Gene profiling focused on this 8-gene pack by northern blot analysis in combination with standard clinical information provided reliable prognostic prediction of human CaP. For a better insight into the potential of this 8-gene signature in tumor detection/classification and therapeutic response, we determined, by qPCR, the expression of these informative genes in the TRAMP mice model of CaP progression.

View Article and Find Full Text PDF

Clusterin (CLU) protein is widely distributed in animal tissues and is involved in many different processes, including apoptosis and neoplastic transformation. Green tea catechins (GTC) are known to exert chemopreventive effects in many cancer models, including transgenic adenocarcinoma mouse prostate (TRAMP) mice that spontaneously develop prostate cancer (CaP). We report here that growth of SV40-immortalized human prostate epithelial cells (PNT1A) as well as tumorigenic, poorly differentiated prostate cancer cells (PC-3) was potently inhibited by EGCG, the major green tea catechin, while normal human prostate epithelial cells were not significantly affected.

View Article and Find Full Text PDF

We show here that gene expression profiling, performed with conventional techniques and focused on a selected group of genes, when used in combination with standard clinical information, provides reliable prognostic prediction of prostate cancer (CaP). We showed previously that changes in the expression of metabolically related genes are involved in CaP progression. We then proceeded to search further for correlations between patients' gene profiling and recurrence with a 5-year follow-up study conducted on the same cohort of patients in which the molecular data were obtained.

View Article and Find Full Text PDF

Clusterin is a highly conserved, widely distributed glycoprotein whose biological significance is still debated. Involved in many biological processes and disease states, clusterin is induced by cell injury and tissue regression, but is repressed during cell proliferation. We have previously reported that clusterin mRNA induction is associated with epithelial cell atrophy in the rat prostate and both clusterin transcript and protein accumulated in quiescent normal human skin fibroblasts.

View Article and Find Full Text PDF