Experimental and computational chemistry are two disciplines used to conduct research in astrochemistry, providing essential reference data for both astronomical observations and modeling. These approaches not only mutually support each other, but also serve as complementary tools to overcome their respective limitations. Leveraging on such synergy, we characterized the binding energies (BEs) of ethanol (CHCHOH) and ethylamine (CHCHNH), two interstellar complex organic molecules (iCOMs), on crystalline and amorphous water ices through density functional theory (DFT) calculations and temperature-programmed desorption (TPD) experiments.
View Article and Find Full Text PDFPhosphorus (P) is a fundamental element for whatever form of life, in the same way as the other biogenic macroelements (SONCH). The prebiotic origin of P is still a matter of debate, as the phosphates present on earth are trapped in almost insoluble solid matrixes (apatites) and, therefore, hardly available for inclusion in living systems in the prebiotic era. The most accepted theories regard a possible exogenous origin during the Archean Era, through the meteoritic bombardment, when tons of reactive P in the form of phosphide ((Fe,Ni)P, schreibersite mineral) reached the primordial earth, reacting with water and providing oxygenated phosphorus compounds (including phosphates).
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2023
Hydrogen cyanide (HCN) represents a small but widely distributed fraction of the interstellar molecules, and it has been observed in all the environments characterizing the formation of a new planetary system. HCN can polymerize to form biomolecules, including adenine (HCN), and it has drawn attention as a possible precursor of several building blocks of life due to the presence of its polymerization products in meteorites, comets and other asteroidal bodies. To elucidate the potential catalytic role that cosmic silicates have played in these processes, we have investigated, at DFT-PBE level inclusive of dispersion correction, the energetic and spectroscopic features of the adsorption of HCN molecules on the most relevant crystalline surfaces of the mineral forsterite (MgSiO), a common silicate constituent of the interstellar core grains and planetary rocky bodies.
View Article and Find Full Text PDFThe study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS).
View Article and Find Full Text PDFThe biological activity of proteins is partly due to their secondary structures and conformational states. Peptide chains are rather flexible so that finding ways inducing protein folding in a well-defined state is of great importance. Among the different constraint techniques, the interaction of proteins with inorganic surfaces is a fruitful strategy to stabilize selected folded states.
View Article and Find Full Text PDFThe binding energies (BE) of molecules on the interstellar grains are crucial in the chemical evolution of the interstellar medium (ISM). Both temperature-programmed desorption (TPD) laboratory experiments and quantum chemistry computations have often provided, so far, only single values of the BE for each molecule. This is a severe limitation, as the ices enveloping the grain mantles are structurally amorphous, giving rise to a manifold of possible adsorption sites, each with different BEs.
View Article and Find Full Text PDFInhaled crystalline silica causes inflammatory lung diseases, but the mechanism for its unique activity compared to other oxides remains unclear, preventing the development of potential therapeutics. Here, the molecular recognition mechanism between membrane epitopes and "nearly free silanols" (NFS), a specific subgroup of surface silanols, is identified and proposed as a novel broad explanation for particle toxicity in general. Silica samples having different bulk and surface properties, specifically different amounts of NFS, are tested with a set of membrane systems of decreasing molecular complexity and different charge.
View Article and Find Full Text PDFInterstellar grains are composed by a rocky core (usually amorphous silicates) covered by an icy mantle, the most abundant molecule being HO followed by CO, CO, NH, and also radicals in minor quantities. In dense molecular clouds, gas-phase chemical species freeze onto the grain surface, making it an important reservoir of molecular diversity/complexity whose evolution leads to interstellar complex organic molecules (iCOMs). Many different models of water clusters have appeared in the literature, but without a systematic study on the properties of the grain (such as the H-bonds features, the oxygen radial distribution function, the dangling species present on the mantle surface, the surface electrostatic potential, etc.
View Article and Find Full Text PDFGlycine (Gly), NHCHCOOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally.
View Article and Find Full Text PDFEthanol (CHCHOH) is a relatively common molecule, often found in star-forming regions. Recent studies suggest that it could be a parent molecule of several so-called interstellar complex organic molecules (iCOMs). However, the formation route of this species remains under debate.
View Article and Find Full Text PDFHCN in the gas form is considered as a primary nitrogen source for the synthesis of prebiotic molecules in extraterrestrial environments. Nevertheless, the research mainly focused on the reactivity of HCN and its derivatives in aqueous systems, often using external high-energy supply in the form of cosmic rays or high energy photons. Very few studies have been devoted to the chemistry of HCN in the gas phase or at the gas/solid interphase, although they represent the more common scenarios in the outer space.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
February 2022
Phosphorus is an element of primary importance for all living creatures, being present in many biological activities in the form of phosphate (PO ). However, there are still open questions about the origin of this specific element and on the transformation that allowed it to be incorporated in biological systems. The most probable source of prebiotic phosphorus is the intense meteoritic bombardment during the Archean era, a few million years after the solar system formation, which brought tons of iron-phosphide materials (schreibersite) on the early Earth crust.
View Article and Find Full Text PDFComputational modeling of protein/surface systems is challenging since the conformational variations of the protein and its interactions with the surface need to be considered at once. Adoption of first-principles methods to this purpose is overwhelming and computationally extremely expensive so that, in many cases, dramatically simplified systems (, small peptides or amino acids) are used at the expenses of modeling nonrealistic systems. In this work, we propose a cost-effective strategy for the modeling of peptide/surface interactions at a full quantum mechanical level, taking the adsorption of polyglycine on the TiO (101) anatase surface as a test case.
View Article and Find Full Text PDFIn this paper, we have studied the vibrational spectral features for the collagen triple helix using a dispersion corrected hybrid density functional theory (DFT-D) approach. The protein is simulated by an infinite extended polymer both in the gas phase and in a water micro-solvated environment. We have adopted proline-rich collagen models in line with the high content of proline in natural collagens.
View Article and Find Full Text PDFJ Chem Theory Comput
April 2021
Collagen proteins are spread in almost every vertebrate's tissue with mechanical function. The defining feature of this fundamental family of proteins is its well-known collagen triple-helical domain. This helical domain can have different geometries, varying in helical elongation and interstrands contact, as a function of the amino acidic composition.
View Article and Find Full Text PDFInhalation of silica particles can induce inflammatory lung reactions that lead to silicosis and/or lung cancer when the particles are biopersistent. This toxic activity of silica dusts is extremely variable depending on their source and preparation methods. The exact molecular moiety that explains and predicts this variable toxicity of silica remains elusive.
View Article and Find Full Text PDFJ Chem Theory Comput
August 2020
In this work, we have computed the exfoliation energy (the energy required to separate a single layer from the bulk structure), the interlayer distance, and the thermodynamic state functions for representative layered inorganic minerals such as Brucite, Portlandite, and Kaolinite, while leaving the more classical 2D transition-metal dichalcogenides (like MoS) for future work. Such materials are interesting for several applications in the field of adsorption and in prebiotic chemistry. Their peculiar features are directly controlled by the exfoliation energy.
View Article and Find Full Text PDFFormamide has been recognized in the literature as a key species in the formation of the complex molecules of life, such as nucleobases. Furthermore, several studies reported the impact of mineral phases as catalysts for its decomposition/polymerization processes, increasing the conversion and also favoring the formation of specific products. Despite the progresses in the field, in situ studies on these mineral-catalyzed processes are missing.
View Article and Find Full Text PDFFormamide is abundant in the interstellar medium and was also present during the formation of the Solar system through the accretion process of interstellar dust. Under the physicochemical conditions of primordial Earth, formamide could have undergone decomposition, either via dehydration (HCN + H2O) or via decarbonylation (CO + NH3). The first reactive channel provides HCN, which is an essential molecular building block for the formation of RNA/DNA bases, crucial for the emergence of life on Earth.
View Article and Find Full Text PDFJ Phys Chem Lett
December 2019
Collagen is the most abundant protein family in the animal kingdom. Its structural motif envisages three polypeptide chains coiled in the so-called collagen triple helix. Depending on the triplet amino acid sequence of the chains, collagen has different helical arrangements.
View Article and Find Full Text PDFSeveral computational techniques for solid-state applications have recently been proposed to enlarge the scope of computer simulations of large molecular systems. In this contribution, we focused on two of these, namely, HF-3c and PBEh-3c. They were recently proposed by the Grimme's group, as "low-cost" ab initio-based techniques for electronic structure calculation of large systems and were proved to be effective essentially for organic molecules.
View Article and Find Full Text PDFCollagen is a protein family defined by a triple helix motif, which comprises roughly one-third of the total human protein content. Decoding the reasons underlying the stability of the collagen triple helix is of both fundamental and applicative relevance, for instance, to guide collagen protein engineering. In principle, full quantum mechanical approaches based on density functional theory (DFT) are ideal to study the subtle physicochemical features of collagen.
View Article and Find Full Text PDFWater is one of the most abundant molecules in the form of solid ice phase in the different regions of the interstellar medium (ISM). This large abundance cannot be properly explained by using only traditional low temperature gas-phase reactions. Thus, surface chemical reactions are believed to be major synthetic channels for the formation of interstellar water ice.
View Article and Find Full Text PDFCarbon monoxide (CO) is one of the most abundant species in the interstellar medium (ISM). In the colder regions of the ISM, it can directly adsorb onto exposed Mg cations of forsterite (Fo, MgSiO), one of the main constituents of the dust grains. Its energetic of adsorption can strongly influence the chemico-physical evolution of cold interstellar clouds; thus, a detailed description of this process is desirable.
View Article and Find Full Text PDF