The USP Rotating Basket Dissolution Testing Apparatus 1 is listed in the USP as one of the tools to assess dissolution of oral solid dosage forms. Baskets of different mesh sizes can be used to differentiate between dissolution profiles of different formulations. Here, we used Particle Image Velocimetry (PIV) to study the hydrodynamics of the USP Apparatus 1 using baskets with different mesh openings (10-, 20- and 40-mesh) revolving at 100 rpm, when the vessel was filled with 500 mL.
View Article and Find Full Text PDFChanges to hydrodynamics arising from changes within dissolution testing systems, such as the fill volume level, can potentially cause variability in dissolution results. However, the literature on hydrodynamics in Apparatus 1 is quite limited and little information is available for vessels with different liquid volumes. Here, velocities in a USP Apparatus 1 vessel with a liquid fill volume of 500 mL, a common alternative to 900 mL, were experimentally measured using 2D-2C Particle Image Velocimetry (PIV) for different basket rotational speeds.
View Article and Find Full Text PDFViral inactivation (VI) is a process widely used across the pharmaceutical industry to eliminate the cytotoxicity resulting from trace levels of viruses introduced by adventitious agents. This process requires adding Triton X-100, a non-ionic detergent solution, to the protein solution and allowing sufficient time for this agent to inactivate the viruses. Differences in process parameters associated with vessel designs, aeration rate, and many other physical attributes can introduce variability in the process, thus making predicting the required blending time to achieve the desired homogeneity of Triton X-100 more critical and complex.
View Article and Find Full Text PDFCetylpyridinium trichlorostannate (CPC-Sn), comprising cetylpyridinium chloride (CPC) and stannous chloride, was synthesized and characterized via single-crystal X-ray diffraction measurements indicating stoichiometry of CHNSnCl where the molecules are arranged in a 1:1 ratio with a cetylpyridinium cation and a [SnCl] anion. CPC-Sn has shown potential for application as a broad-spectrum antimicrobial agent, to reduce bacteria-generated volatile sulfur compounds and to produce advanced functional materials. In order to investigate its controlled-release properties, electrical resistance tomography was implemented.
View Article and Find Full Text PDFThe USP Apparatus 1 (rotating basket), typically used to assess drug product reproducibility and evaluate oral solid dosage forms performance, consists of a cylindrical glass vessel with a hemispherical bottom and a wire basket rotating at constant speed. Baskets with different wire openings can be used in alternative to the standard mesh opening (40-mesh) in order to discriminate between drug formulations during early stage of drug product development. Any changes introduced by different basket geometries can potentially and significantly impact the system hydrodynamics and cause variability of results, thus affecting product quality.
View Article and Find Full Text PDFThe USP Apparatus 1 (basket apparatus) is commonly used to evaluate the dissolution performance of oral solid dosage forms. The hydrodynamics generated by the basket contributes, in general, to the dissolution rate and hence the dissolution results. Here, the hydrodynamics of Apparatus 1 was quantified in a vessel filled with 900-mL de-ionized water at room temperature by determining, via Particle Image Velocimetry (PIV), the velocity profiles on a vertical central plane and on 11 horizontal planes at different elevations at three different basket agitation speeds.
View Article and Find Full Text PDFThe hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet.
View Article and Find Full Text PDFMini vessel dissolution testing systems consist of a small-scale 100-mL vessel with a small paddle impeller, similar to the USP Apparatus 2, and are typically utilized when only small amounts of drug product are available during drug development. Despite their common industrial use, mini vessels have received little attention in the literature. Here, Computational Fluid Dynamics (CFD) was used to predict velocity profiles, flow patterns, and strain rate distribution in a mini vessel at different agitation speeds.
View Article and Find Full Text PDFJ Environ Eng (New York)
January 2016
The baffled flask test (BFT) has been proposed by United States Environmental Protection Agency to be adopted as the official standard protocol for testing dispersant effectiveness. The mixing energy in the baffled flask is investigated in this paper. Particle image velocimetry (PIV) was used to measure the water velocity in the flask placed at an orbital shaker that was rotated at seven rotation speeds: 100, 125, 150, 160, 170, 200, and 250 rpm.
View Article and Find Full Text PDFDuring dissolution testing of solid dosage forms in the United States Pharmacopoeia (USP) Apparatus 2, samples are manually withdrawn from the medium in the vessel prior to the analysis. Probes permanently inserted in the medium can automate the sampling process but can also alter the system's hydrodynamics, possibly resulting in different dissolution-testing results. In this work, dissolution tests were conducted in a USP Apparatus 2 with and without an arch-shaped fiber optic probe using prednisone tablets fixed at nine different locations on the vessel bottom.
View Article and Find Full Text PDFDissolution testing is routinely conducted in the pharmaceutical industry to provide in vitro drug release information for quality control purposes. The most common dissolution testing system for solid dosage forms is the United States Pharmacopeia (USP) Dissolution Testing Apparatus 2. This apparatus is very sensitive to the initial location of the tablet, which cannot be controlled because the tablet is dropped into the vessel at the beginning of the test and it may rest at random locations at the vessel's bottom.
View Article and Find Full Text PDFThe fluid velocity profiles at different locations inside a standard USP Dissolution Testing Apparatus 2 were experimentally obtained via Laser Doppler Velocimetry (LDV) at three impeller agitations speeds, namely 50rpm, 75rpm and 100rpm. The experimental results were compared with the predictions obtained with Computational Fluid Dynamics (CFD) where the κ-ω model with low Reynolds number correction was used to account for turbulence effects. In general, good agreement was found between the experimental LDV velocity measurements and the CFD simulation predictions.
View Article and Find Full Text PDFTablets undergoing dissolution in the USP Dissolution Testing Apparatus II are often found at locations on the vessel bottom that are off-center with respect to the dissolution vessel and impeller. A previously validated CFD approach and a novel experimental method were used here to examine the effect of tablet location on strain rates and dissolution rates. Dissolution tests were conducted with non-disintegrating tablets (salicylic acid) and disintegrating tablets (Prednisone) immobilized at different locations along the vessel bottom.
View Article and Find Full Text PDFPurpose: The United States Pharmacopoeia (USP) imposes strict requirements on the geometry and operating conditions of the USP Dissolution Testing Apparatus II. A previously validated Computational Fluid Dynamics (CFD) approach was used here to study the hydrodynamics of USP Apparatus II when the impeller was placed at four different locations, all within the limits specified by USP.
Method: CFD was used to predict the velocity profiles, energy dissipation rates, and strain rates when the impeller was placed in the reference location (centrally mounted, 25 mm off the vessel bottom), 2 mm off-center, 2 mm higher, and 2 mm lower than the reference location.
Blend time, the time to achieve a predefined level of homogeneity of a tracer in a mixing vessel, is an important parameter to evaluate the mixing efficiency of mixing devices. In this work, the blend time required to homogenize the liquid content of a USP Dissolution Testing Apparatus II under a number of operating conditions was obtained using two different experimental methods (tracer detection via colorimetric and conductivity measurements), a computational approach (computational fluid dynamics (CFD)), and a semi-theoretical analysis of the phenomenon. Under the standard geometric and operating conditions in which the USP Apparatus II is typically used (N = 50 rpm) the experimental blend time to achieve a 92.
View Article and Find Full Text PDFThe USP Apparatus II is the device commonly used to conduct dissolution testing in the pharmaceutical industry. Despite its widespread use, dissolution testing remains susceptible to significant error and test failures, and limited information is available on the hydrodynamics of this apparatus. In this work, laser-Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were used, respectively, to experimentally map and computationally predict the velocity distribution inside a standard USP Apparatus II under the typical operating conditions mandated by the dissolution test procedure.
View Article and Find Full Text PDFThe effect of a synthetic iron(III)-porphyrin meso-tetra(2,6-dichloro-3-sulfonatophenyl)porphyrinate as a biomimetic catalyst in the oxidative treatment of 2,4-dichlorophenol (2,4-DCP) with humic substances and H(2)O(2) was evaluated in factorial design experiments conducted at different concentrations of 2,4-DCP (0-25 ppm) and different incubation treatment times (0, 24, 96, or 120 h). In the absence of this treatment, bioassays with the bacterium Pseudomonas putida (ATCC11250) showed decreasing specific growth rates mu (used here to quantify 2,4-DCP toxicity) with increasing concentrations of 2,4-DCP. However, when 2,4-DCP was treated as mentioned above the toxicity of the resulting 2,4-DCP solution was reduced significantly.
View Article and Find Full Text PDF