Calcium signaling has an essential role in fundamental processes of Plasmodium life cycle, including migration, cell invasion and parasite development. Two important players in calcium homeostasis, the Histidine Triad (HIT) protein that is implicated in calcium signaling in mammalian cells and calmodulin, which is a classic calcium sensor in eukaryotes are present in Plasmodium falciparum, however theirs function is unknown in the parasite. Here, we investigated the involvement of the P.
View Article and Find Full Text PDFMalaria is a disease caused by Plasmodium parasites that affects hundreds of millions of people. Plasmodium proteases are involved in invasion, erythrocyte egress and degradation of host proteins. Falcipains are well-studied cysteine peptidases located in P.
View Article and Find Full Text PDFCalcium and calmodulin (CaM) are important players in eukaryote cell signaling. In the present study, by using a knockin approach, we demonstrated the expression and localization of CaM in all erythrocytic stages of Plasmodium falciparum. Under extracellular Ca(2+)-free conditions, calmidazolium (CZ), a potent CaM inhibitor, promoted a transient cytosolic calcium ([Ca(2+)]cyt) increase in isolated trophozoites, indicating that CZ mobilizes intracellular sources of calcium.
View Article and Find Full Text PDFIn the intraerythrocytic trophozoite stages of Plasmodium falciparum, the calcium-dependent cysteine protease calpain (Pf-calpain) has an important role in the parasite calcium modulation and cell development. We established specific conditions to follow by confocal microscopy and spectrofluorimetry measurements the intracellular activity of Pf-calpain in live cells. The catalytic activity was measured using the fluorogenic Z-Phe-Arg-MCA (where Z is carbobenzoxy and MCA is 4-methylcoumaryl-7-amide).
View Article and Find Full Text PDFMalaria is a disease caused by Plasmodium parasites and remains one of the most prevalent and persistent maladies, affecting hundreds of millions of people. In the present work, we evaluated the capability of Plasmodium falciparum proteases to hydrolyze the multifunctional protein plasminogen, which is implicated in angiogenesis and coagulation processes by the generation of angiostatin and plasmin, respectively. Using fluorescence microscopy, we visualized the internalization of FITC-labeled plasminogen in erythrocytes infected by P.
View Article and Find Full Text PDFWe studied the substrate specificity requirements of recombinant cysteine peptidases from Plasmodium falciparum, falcipain-2 (FP-2) and falcipain-3 (FP-3), using fluorescence resonance energy transfer (FRET) peptides as substrates. Systematic modifications were introduced in the lead sequence Abz-KLRSSKQ-EDDnp (Abz=ortho-aminobenzoic acid; EDDnp=N-[2,4-dinitrophenyl]ethylenediamine) resulting in five series assayed to map S3-S'2 subsite specificity. Despite high sequence identity and structural similarity between FP-2 and FP-3, noteworthy differences in substrate specificity were observed.
View Article and Find Full Text PDFA model betalainic dye was semisynthesized from betanin, the magenta pigment of the red beet, and was effective for live-cell imaging of Plasmodium-infected red blood cells. This water-soluble fluorescent probe is photostable, excitable in the visible region and cell membrane-permeable, and its photophysical properties are not notably pH-sensitive. Fluorescence imaging microscopy of erythrocytes infected with Plasmodium falciparum, a causative agent of malaria in humans, showed that only the parasite was stained.
View Article and Find Full Text PDFBackground: The malaria burden remains a major public health concern, especially in sub-Saharan Africa. The complex biology of Plasmodium, the apicomplexan parasite responsible for this disease, challenges efforts to develop new strategies to control the disease. Proteolysis is a fundamental process in the metabolism of malaria parasites, but roles for proteases in generating vasoactive peptides have not previously been explored.
View Article and Find Full Text PDFRegarded as the circadian hormone in mammals, melatonin is a highly conserved molecule, present in nearly all species. In this review, we discuss the role of this indolamine and its precursors in the cell biology of parasites and the role of the molecule in the physiology of the host. In Plasmodium, melatonin can modulate intracellular concentrations of calcium and cAMP, which in turn can regulate kinase activity and cell cycle.
View Article and Find Full Text PDFThe cellular traffic of haem during the development of the human malaria parasite Plasmodium falciparum, through the stages R (ring), T (trophozoite) and S (schizonts), was investigated within RBC (red blood cells). When Plasmodium cultures were incubated with a fluorescent haem analogue, ZnPPIX (Zn protoporphyrin IX) the probe was seen at the cytoplasm (R stage), and the vesicle-like structure distribution pattern was more evident at T and S stages. The temporal sequence of ZnPPIX uptake by P.
View Article and Find Full Text PDFWe have previously reported that Plasmodium chabaudi and P. falciparum sense the hormone melatonin and this could be responsible for the synchrony of malaria infection. In P.
View Article and Find Full Text PDFThe ion calcium is a ubiquitous second messenger, present in all eukaryotic cells. It modulates a vast number of cellular events, such as cell division and differentiation, fertilization, cell volume, decodification of external stimuli. To process this variety of information, the cells display a number of calcium pools, which are capable of mobilization for signaling purposes.
View Article and Find Full Text PDF