We propose a framework that combines traditional, hand-crafted algorithms and recent advances in deep learning to obtain high-quality, high-resolution disparity maps from stereo images. By casting the refinement process as a continuous feature sampling strategy, our neural disparity refinement network can estimate an enhanced disparity map at any output resolution. Our solution can process any disparity map produced by classical stereo algorithms, as well as those predicted by modern stereo networks or even different depth-from-images approaches, such as the COLMAP structure-from-motion pipeline.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2024
Estimating depth from images nowadays yields outstanding results, both in terms of in-domain accuracy and generalization. However, we identify two main challenges that remain open in this field: dealing with non-Lambertian materials and effectively processing high-resolution images. Purposely, we propose a novel dataset that includes accurate and dense ground-truth labels at high resolution, featuring scenes containing several specular and transparent surfaces.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2023
Availability of labelled data is the major obstacle to the deployment of deep learning algorithms for computer vision tasks in new domains. The fact that many frameworks adopted to solve different tasks share the same architecture suggests that there should be a way of reusing the knowledge learned in a specific setting to solve novel tasks with limited or no additional supervision. In this work, we first show that such knowledge can be shared across tasks by learning a mapping between task-specific deep features in a given domain.
View Article and Find Full Text PDF