Publications by authors named "Pierluigi Valente"

The unique properties of few-layered graphene (FLG) make it interesting for a variety of applications, including biomedical applications, such as tissue engineering and drug delivery. Although different studies focus on applications in the central nervous system, its interaction with the peripheral nervous system has been so far overlooked. Here, we investigated the effects of exposure to colloidal dispersions of FLG on the sensory neurons of the rat dorsal root ganglia (DRG).

View Article and Find Full Text PDF

Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype.

View Article and Find Full Text PDF

PRRT2 is a neuronal protein that controls neuronal excitability and network stability by modulating voltage-gated Na channel (Nav). PRRT2 pathogenic variants cause pleiotropic syndromes including epilepsy, paroxysmal kinesigenic dyskinesia and episodic ataxia attributable to loss-of-function pathogenetic mechanism. Based on the evidence that the transmembrane domain of PRRT2 interacts with Nav1.

View Article and Find Full Text PDF

Proline-rich transmembrane protein 2 (PRRT2) is the single causative gene for pleiotropic paroxysmal syndromes, including epilepsy, kinesigenic dyskinesia, episodic ataxia, and migraine. PRRT2 is a neuron-specific type-2 membrane protein with a COOH-terminal intramembrane domain and a long proline-rich NH-terminal cytoplasmic region. A large array of experimental data indicates that PRRT2 is a neuron stability gene that negatively controls intrinsic excitability by regulating surface membrane localization and biophysical properties of voltage-dependent Na channels Nav1.

View Article and Find Full Text PDF

Neuron-restrictive silencer factor/repressor element 1 (RE1)-silencing transcription factor (NRSF/REST) is a transcriptional repressor of a large cluster of neural genes containing RE1 motifs in their promoter region. NRSF/REST is ubiquitously expressed in non-neuronal cells, including astrocytes, while it is down-regulated during neuronal differentiation. While neuronal NRSF/REST homeostatically regulates intrinsic excitability and synaptic transmission, the role of the high NRSF/REST expression levels in the homeostatic functions of astrocytes is poorly understood.

View Article and Find Full Text PDF

Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein implicated in the control of neurotransmitter release and neural network stability. Accordingly, PRRT2 loss-of-function mutations associate with pleiotropic paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. PRRT2 is a negative modulator of the membrane exposure and biophysical properties of Na channels Na1.

View Article and Find Full Text PDF

The repressor-element 1-silencing transcription/neuron-restrictive silencer factor (REST/NRSF) controls hundreds of neuron-specific genes. We showed that REST/NRSF downregulates glutamatergic transmission in response to hyperactivity, thus contributing to neuronal homeostasis. However, whether GABAergic transmission is also implicated in the homeostatic action of REST/NRSF is unknown.

View Article and Find Full Text PDF

Loss-of-function mutations in proline-rich transmembrane protein-2 (PRRT2) cause paroxysmal disorders associated with defective Ca dependence of glutamatergic transmission. We find that either acute or constitutive PRRT2 deletion induces a significant decrease in the amplitude of evoked excitatory postsynaptic currents (eEPSCs) that is insensitive to extracellular Ca and associated with a reduced contribution of P/Q-type Ca channels to the EPSC amplitude. This synaptic phenotype parallels a decrease in somatic P/Q-type Ca currents due to a decreased membrane targeting of the channel with unchanged total expression levels.

View Article and Find Full Text PDF

Mutations in PRoline Rich Transmembrane protein 2 (PRRT2) cause pleiotropic syndromes including benign infantile epilepsy, paroxysmal kinesigenic dyskinesia, episodic ataxia, that share the paroxysmal character of the clinical manifestations. PRRT2 is a neuronal protein that plays multiple roles in the regulation of neuronal development, excitability, and neurotransmitter release. To better understand the physiopathology of these clinical phenotypes, we investigated PRRT2 interactome in mouse brain by a pulldown-based proteomic approach and identified α1 and α3 Na/K ATPase (NKA) pumps as major PRRT2-binding proteins.

View Article and Find Full Text PDF

PRoline-Rich Transmembrane protein-2 (PRRT2) is a recently described neuron-specific type-2 integral membrane protein with a large cytosolic N-terminal domain that distributes in presynaptic and axonal domains where it interacts with several presynaptic proteins and voltage-gated Na channels. Several PRRT2 mutations are the main cause of a wide and heterogeneous spectrum of paroxysmal disorders with a loss-of-function pathomechanism. The highest expression levels of PRRT2 in brain occurs in cerebellar granule cells (GCs) and cerebellar dysfunctions participate in the dyskinetic phenotype of PRRT2 knockout (KO) mice.

View Article and Find Full Text PDF

TRPV1, a member of the transient receptor potential (TRP) family, is a nonselective calcium permeable ion channel gated by physical and chemical stimuli. In the skin, TRPV1 plays an important role in neurogenic inflammation, pain and pruritus associated to many dermatological diseases. Consequently, TRPV1 modulators could represent pharmacological tools to respond to important patient needs that still represent an unmet medical demand.

View Article and Find Full Text PDF

Mutations in proline-rich transmembrane protein 2 (PRRT2) have been recently identified as the leading cause of a clinically heterogeneous group of neurological disorders sharing a paroxysmal nature, including paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. To date, studies aimed at understanding its physiological functions in neurons have mainly focused on its ability to regulate neurotransmitter release and neuronal excitability. Here, we show that PRRT2 expression in non-neuronal cell lines inhibits cell motility and focal adhesion turnover, increases cell aggregation propensity, and promotes the protrusion of filopodia, all processes impinging on the actin cytoskeleton.

View Article and Find Full Text PDF

Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both and LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes.

View Article and Find Full Text PDF

Transient Receptor Potential Vanilloid 1 (TRPV1) channels are non-selective cationic polymodal receptors gated by several different chemical and physical stimuli. TRPV1 receptors are distributed in several brain areas and interact with important neurotransmitter systems linked to mental disorders, such as endocannabinoid and opioid systems. The increasing number of results obtained in this field has recently attracted growing attention to these receptors as potential targets for the treatment of different psychiatric conditions.

View Article and Find Full Text PDF

-methyl-d-aspartate receptors (NMDARs) are ionotropic glutamate receptors controlling fundamental physiological processes in the central nervous system, such as learning and memory. Excessive activation of NMDARs causes excitotoxicity and results in neurodegeneration, which is observed in a number of pathological conditions. Because of their dichotomous role, therapeutic targeting of NMDAR is difficult.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) is a polymodal cation channel gated by a large array of chemical and physical stimuli and distributed across different brain regions on neuronal and glial cells. Preclinical studies indicate that TRPV1 might be a target for the treatment of anxiety, depression and addictive disorders. The aim of this narrative review is to focus on studies examining the effects of TRPV1 antagonism on neuroinflammation, neuroprotection and epigenetic regulation.

View Article and Find Full Text PDF

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain scaffolding protein with kinase and GTPase activities involved in synaptic vesicle (SV) dynamics. While its role in Parkinson's disease has been largely investigated, little is known about LRRK2 physiological role and until now few proteins have been described as substrates. We have previously demonstrated that LRRK2 through its WD40 domain interacts with synapsin I, an important SV-associated phosphoprotein involved in neuronal development and in the regulation of neurotransmitter release.

View Article and Find Full Text PDF

Cultured hippocampal neurons represent the most widely used experimental substrate for in vitro electrophysiological studies. Nevertheless, in most cases, the nature of neuron under study is not identified as excitatory or inhibitory, or even worse, recorded neurons are considered as excitatory because of the paucity of GABAergic interneurons. Thus, the definition of reliable criteria able to guarantee an unequivocal identification of excitatory and inhibitory cultured hippocampal neurons is an unmet need.

View Article and Find Full Text PDF

Mutations in PRoline-Rich Transmembrane protein 2 (PRRT2) underlie a group of paroxysmal disorders including epilepsy, kinesigenic dyskinesia and migraine. Most of the mutations lead to impaired PRRT2 expression and/or function, emphasizing the pathogenic role of the PRRT2 deficiency. In this work, we investigated the phenotype of primary hippocampal neurons obtained from mouse embryos in which the PRRT2 gene was constitutively inactivated.

View Article and Find Full Text PDF

See Lerche (doi:10.1093/brain/awy073) for a scientific commentary on this article.Proline-rich transmembrane protein 2 (PRRT2) is the causative gene for a heterogeneous group of familial paroxysmal neurological disorders that include seizures with onset in the first year of life (benign familial infantile seizures), paroxysmal kinesigenic dyskinesia or a combination of both.

View Article and Find Full Text PDF

The striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific phosphatase involved in synaptic transmission. The current hypothesis on STEP function holds that it opposes synaptic strengthening by dephosphorylating and inactivating key neuronal proteins involved in synaptic plasticity and intracellular signaling, such as the MAP kinases ERK1/2 and p38, as well as the tyrosine kinase Fyn. Although STEP has a predominant role at the post-synaptic level, it is also expressed in nerve terminals.

View Article and Find Full Text PDF

Synaptic transmission is critically dependent on synaptic vesicle (SV) recycling. Although the precise mechanisms of SV retrieval are still debated, it is widely accepted that a fundamental role is played by clathrin-mediated endocytosis, a form of endocytosis that capitalizes on the clathrin/adaptor protein complex 2 (AP2) coat and several accessory factors. Here, we show that the previously uncharacterized protein KIAA1107, predicted by bioinformatics analysis to be involved in the SV cycle, is an AP2-interacting clathrin-endocytosis protein (APache).

View Article and Find Full Text PDF

Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Heterozygous mutations in PRRT2 are linked to disorders like epilepsy, kinesigenic dyskinesia, and migraines, primarily due to reduced PRRT2 expression.
  • PRRT2 is found at presynaptic terminals, and its silencing causes fewer synapses and more docked synaptic vesicles, disrupting normal neurotransmitter release.
  • PRRT2 is crucial for the final stages of neurotransmitter release by interacting with key synaptic proteins and influencing calcium sensitivity and release probability.
View Article and Find Full Text PDF