Owing to their intrinsic stability against optical feedback (OF), quantum cascade lasers (QCLs) represent a uniquely versatile source to further improve self-mixing interferometry at mid-infrared and terahertz (THz) frequencies. Here, we show the feasibility of detecting with nanometer precision, the deeply subwavelength ($ \lt \lambda /6000 $<λ/6000) mechanical vibrations of a suspended $ {{\rm Si}_3}{{\rm N}_4} $SiN membrane used as the external element of a THz QCL feedback interferometer. Besides representing an extension of the applicability of vibrometric characterization at THz frequencies, our system can be exploited for the realization of optomechanical applications, such as dynamical switching between different OF regimes and a still-lacking THz master-slave configuration.
View Article and Find Full Text PDFWe demonstrate a gas spectroscopy technique, using self-mixing in a 3.4 terahertz quantum-cascade laser (QCL). All previous QCL spectroscopy techniques have required additional terahertz instrumentation (detectors, mixers, or spectrometers) for system pre-calibration or spectral analysis.
View Article and Find Full Text PDF