Background: About 40-50% of patients with familial microscopic hematuria (FMH) caused by thin basement membrane nephropathy (TBMN) inherit heterozygous mutations in collagen IV genes (COL4A3, COL4A4). On long follow-up, the full phenotypic spectrum of these patients varies a lot, ranging from isolated MH or MH plus low-grade proteinuria to chronic renal failure of variable degree, including end-stage renal disease (ESRD).
Methods: Here, we performed Whole Exome Sequencing (WES) in patients of six families, presenting with autosomal dominant FMH, with or without progression to proteinuria and loss of renal function, all previously found negative for severe collagen IV mutations.
Familial microscopic hematuria (FMH) is associated with a genetically heterogeneous group of conditions including the collagen-IV nephropathies, the heritable C3/CFHR5 nephropathy and the glomerulopathy with fibronectin deposits. The clinical course varies widely, ranging from isolated benign familial hematuria to end-stage renal disease (ESRD) later in life. We investigated 24 families using next generation sequencing (NGS) for 5 genes: COL4A3, COL4A4, COL4A5, CFHR5 and FN1.
View Article and Find Full Text PDFBackground: Recent data emphasize that thin basement membrane nephropathy (TBMN) should not be viewed as a form of benign familial hematuria since chronic renal failure (CRF) and even end-stage renal disease (ESRD), is a possible development for a subset of patients on long-term follow-up, through the onset of focal and segmental glomerulosclerosis (FSGS). We hypothesize that genetic modifiers may explain this variability of symptoms.
Methods: We looked in silico for potentially deleterious functional SNPs, using very strict criteria, in all the genes significantly expressed in the slit diaphragm (SD).
Alport syndrome (AS) is a hereditary progressive glomerulonephritis with a high life-time risk for end-stage renal disease (ESRD). Most patients will reach ESRD before the age of 30 years, while a subset of them with milder mutations will do so at older ages, even after 50 years. Frequent extrarenal manifestations are hearing loss and ocular abnormalities.
View Article and Find Full Text PDFBackground And Aims: Cystinuria represents 3% of nephrolithiasis in humans. Two genes have been identified as the main genetic causes of cystinuria, SLC3A1 and SLC7A9, with an autosomal recessive mode of inheritance. In the present study, we studied for the first time, genetically and clinically, all the cystinuric families identified so far in the Greek-Cypriot population.
View Article and Find Full Text PDFCollagen IV nephropathies (COL4Ns) comprise benign familial microscopic hematuria, thin basement membrane nephropathy (TBMN), X-linked Alport syndrome (AS) and also autosomal recessive and dominant AS. Apart from the X-linked form of AS, which is caused by hemizygous mutations in the COL4A5 gene, the other entities are caused by mutations in the COL4A3 or COL4A4 genes. The diagnosis of these conditions used to be based on clinical and/or histological findings of renal biopsies, but it is the new molecular genetics approach that revolutionised their investigation and proved particularly instrumental, especially, in many not so clear-cut cases.
View Article and Find Full Text PDFEndothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °).
View Article and Find Full Text PDFBackground/aims: A subset of patients who present with proteinuria and are diagnosed with focal segmental glomerulosclerosis (FSGS) have inherited heterozygous COL4A3/A4 mutations and are also diagnosed with thin basement membrane nephropathy (TBMN-OMIM: 141200). Two studies showed that co-inheritance of NPHS2-p.Arg229Gln, a podocin variant, may increase the risk for proteinuria and renal function decline.
View Article and Find Full Text PDFFamilial glomerular hematuria(s) comprise a genetically heterogeneous group of conditions which include Alport Syndrome (AS) and thin basement membrane nephropathy (TBMN). Here we investigated 57 Greek-Cypriot families presenting glomerular microscopic hematuria (GMH), with or without proteinuria or chronic kidney function decline, but excluded classical AS. We specifically searched the COL4A3/A4 genes and identified 8 heterozygous mutations in 16 families (28,1%).
View Article and Find Full Text PDFFamilial Mediterranean fever (FMF) is caused by mutations in the MEFV gene and the spectrum of mutations among Greek-Cypriots with FMF-related symptoms was examined. Sequence analysis for exons 2, 3, 5, and 10 of the MEFV gene was performed in a cohort of 593 patients. A total of 70 patients carried mutations in the homozygote or compound heterozygote state, 128 were identified with one MEFV mutation and 395 had no mutations.
View Article and Find Full Text PDFAlport syndrome (ATS) results from X-linked, COL4A5 mutations (85%) or from autosomal recessive homozygous or compound heterozygous COL4A3/A4 mutations (15%), associated with alternate thinning and thickening as well as splitting and lamellation of the glomerular basement membranes. In contrast, familial microhematuria with thin basement membranes is thought to result from heterozygous COL4A3/A4 mutations. This absolute separation may not always be true.
View Article and Find Full Text PDFDiabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localizes typically in regions of low or disturbed shear stress, but in diabetics, the distribution is more diffuse, suggesting that there is a fundamental difference in the way cells sense shear forces.
View Article and Find Full Text PDFThe familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND).
View Article and Find Full Text PDFFamilial hematuria (FH) is explained by at least four different genes (see below). About 50% of patients develop late proteinuria and chronic kidney disease (CKD). We hypothesized that MYH9/APOL1, two closely linked genes associated with CKD, may be associated with adverse progression in FH.
View Article and Find Full Text PDFMicroscopic haematuria is the presenting symptom of several conditions, either heritable or acquired. A well-recognized familial condition is Alport syndrome, either of X-linked or autosomal recessive inheritance, as well as thin basement membrane nephropathy (TBMN) because of heterozygous collagen IV mutations. Even though microscopic haematuria of TBMN was long considered as a benign disease with excellent prognosis, more recent data suggest that development of chronic kidney disease (CKD) and even end-stage kidney disease (ESKD) is not a rare finding, perhaps owing to the cofounding role of modifier genes and other factors.
View Article and Find Full Text PDFHeparin binding epidermal growth factor (HBEGF) is expressed in podocytes and was shown to play a role in glomerular physiology. MicroRNA binding sites on the 3'UTR of HBEGF were predicted using miRWalk algorithm and followed by DNA sequencing in 103 patients diagnosed with mild or severe glomerulopathy. A single nucleotide polymorphism, miRSNP C1936T (rs13385), was identified at the 3'UTR of HBEGF that corresponds to the second base of the hsa-miR-1207-5p seed region.
View Article and Find Full Text PDFBackground: Familial hematuria (FH) is associated with at least two pathological entities: thin basement membrane nephropathy (TBMN), caused by heterozygous COL4A3/COL4A4 mutations, and C3 nephropathy caused by CFHR5 mutations. It is now known that TBMN patients develop proteinuria and changes of focal segmental glomerulosclerosis when biopsied. End-stage kidney disease (ESKD) is observed in 20% of carriers, at ages 50-70.
View Article and Find Full Text PDFFamilial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN).
View Article and Find Full Text PDFBackground And Objectives: Complement factor H and related proteins (CFHR) are key regulators of the alternative complement pathway, where loss of function mutations lead to a glomerulopathy with isolated mesangial C3 deposits without immunoglobulins. Gale et al. (12) reported on 26 patients with the first familial, hematuric glomerulopathy caused by a founder mutation in the CFHR5 gene in patients of Cypriot descent living in the United Kingdom.
View Article and Find Full Text PDFThe X-linked Alport syndrome (ATS) is caused by mutations in COL4A5 and exhibits a widely variable expression. Usually ATS is heralded with continuous microhematuria which rapidly progresses to proteinuria, hypertension and chronic or end-stage renal disease (ESRD) by adolescence, frequently accompanied by sensorineural deafness and ocular complications. Milder forms of ATS also exist.
View Article and Find Full Text PDFComplement factor H-related protein 5 (CFHR5) nephropathy is a familial renal disease endemic in Cyprus. It is characterized by persistent microscopic hematuria, synpharyngitic macroscopic hematuria and progressive renal impairment. Isolated glomerular accumulation of complement component 3 (C3) is typical with variable degrees of glomerular inflammation.
View Article and Find Full Text PDFAims: To investigate clinically and genetically all the distal renal tubular acidosis (dRTA) cases in Cyprus, to study one more family from Greece and to perform the first dRTA prenatal diagnosis. We also tried to find any association with sensorineural hearing loss (SNHL) onset and particular mutations.
Methods: Nine dRTA families from Cyprus and one from Greece were analyzed for mutations in ATP6V1B1 gene by DNA resequencing and PCR-RFLPs.
Background: Complement is a key component of the innate immune system, and variation in genes that regulate its activation is associated with renal and other disease. We aimed to establish the genetic basis for a familial disorder of complement regulation associated with persistent microscopic haematuria, recurrent macroscopic haematuria, glomerulonephritis, and progressive renal failure.
Methods: We sought patients from the West London Renal and Transplant Centre (London, UK) with unusual renal disease and affected family members as a method of identification of new genetic causes of kidney disease.