As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis.
View Article and Find Full Text PDFThe redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders.
View Article and Find Full Text PDFParkinson׳s disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice. The chronic and slow progressing nature of PD may result from subtle yet persistent alterations in biological mechanisms, which might be undetectable in basal, unchallenged conditions.
View Article and Find Full Text PDFA strong correlation between oxidative stress (OS) and Rett syndrome (RTT), a rare neurodevelopmental disorder affecting females in the 95% of the cases, has been well documented although the source of OS and the effect of a redox imbalance in this pathology has not been yet investigated. Using freshly isolated skin fibroblasts from RTT patients and healthy subjects, we have demonstrated in RTT cells high levels of H2O2 and HNE protein adducts. These findings correlated with the constitutive activation of NADPH-oxidase (NOX) and that was prevented by a NOX inhibitor and iron chelator pre-treatment, showing its direct involvement.
View Article and Find Full Text PDFMitochondria produce the bulk of cellular energy and work as decisional "hubs" for cellular responses by integrating different input signals. The determinant in the physiopathology of mammals, they attract major attention, nowadays, for their contribution to brain degeneration. How they can withstand or succumb to insults leading to neuronal death is an object of great attention increasing the need for a better understanding of the interplay between inner and outer mitochondrial pathways residing in the cytosol.
View Article and Find Full Text PDFBackground: Parkinson's disease (PD) is a complex disease and the current interest and focus of scientific research is both investigating the variety of causes that underlie PD pathogenesis, and identifying reliable biomarkers to diagnose and monitor the progression of pathology. Investigation on pathogenic mechanisms in peripheral cells, such as fibroblasts derived from patients with sporadic PD and age/gender matched controls, might generate deeper understanding of the deficits affecting dopaminergic neurons and, possibly, new tools applicable to clinical practice.
Methods: Primary fibroblast cultures were established from skin biopsies.
Damage of presynaptic mitochondria could result in release of proapoptotic factors that threaten the integrity of the entire neuron. We discovered that alpha-synuclein (Syn) forms a triple complex with anionic lipids (such as cardiolipin) and cytochrome c, which exerts a peroxidase activity. The latter catalyzes covalent hetero-oligomerization of Syn with cytochrome c into high molecular weight aggregates.
View Article and Find Full Text PDFMore than 80 years after iron accumulation was initially described in the substantia nigra (SN) of Parkinson's disease (PD) patients, the mechanisms responsible for this phenomenon are still unknown. Similarly, how iron is delivered to its major recipients in the cell - mitochondria and the respiratory complexes - has yet to be elucidated. Here, we report a novel transferrin/transferrin receptor 2 (Tf/TfR2)-mediated iron transport pathway in mitochondria of SN dopamine neurons.
View Article and Find Full Text PDFProgrammed cell death (PCD) by apoptosis has been widely characterized as a process in which the expression and protein activation of a gene must be regulated in a very precise way in order to achieve the elimination of the dying cell without disturbing the neighborhoods. One of the first genes observed to be induced during the onset of PCD is the one coding for type 2 transglutaminase (TG2). Since the late 1990s, the unveiling of different new properties and enzymatic activities suggested the involvement of TG2 in a variety of cellular processes other than PCD and rendered the study of this protein more and more complicated.
View Article and Find Full Text PDFHuntington's disease (HD) is caused by polyglutamine (polyQ) expansion in huntingtin (htt), a large (350 kDa) protein that localizes predominantly to the cytoplasm. Proteolytic cleavage of mutant htt yields polyQ-containing N-terminal fragments that are prone to misfolding and aggregation. Disease progression in HD transgenic models correlates with age-related accumulation of soluble and aggregated forms of N-terminal mutant htt fragments, suggesting that multiple forms of mutant htt are involved in the selective neurodegeneration in HD.
View Article and Find Full Text PDFTransglutaminase 2 (TG2) represents the most ubiquitous isoform belonging to the TG family, and has been implicated in the pathophysiology of basal ganglia disorders, such as Parkinson's disease and Huntington's disease. We show that ablation of TG2 in knockout mice causes a reduced activity of mitochondrial complex I associated with an increased activity of complex II in the whole forebrain and striatum. Interestingly, TG2-/- mice were protected against nigrostriatal damage induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, which is converted in vivo into the mitochondrial complex I inhibitor, 1-methyl-4-phenyl-pyridinium ion.
View Article and Find Full Text PDFIn this study we provide the first in vivo evidences showing that, under physiological conditions, "tissue" transglutaminase (TG2) might acts as a protein disulphide isomerase (PDI) and through this activity contributes to the correct assembly of the respiratory chain complexes. Mice lacking TG2 exhibit mitochondrial energy production impairment, evidenced by decreased ATP levels after physical challenge. This defect is phenotypically reflected in a dramatic decrease of motor behaviour of the animals.
View Article and Find Full Text PDFApoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, after apoptosis induction, translocates to the nucleus where it participates in apoptotic chromatinolysis. Here, we show that human or mouse cells lacking AIF as a result of homologous recombination or small interfering RNA exhibit high lactate production and enhanced dependency on glycolytic ATP generation, due to severe reduction of respiratory chain complex I activity. Although AIF itself is not a part of complex I, AIF-deficient cells exhibit a reduced content of complex I and of its components, pointing to a role of AIF in the biogenesis and/or maintenance of this polyprotein complex.
View Article and Find Full Text PDFTissue transglutaminase (TGase2) is a protein-crosslinking enzyme known to be associated with the in vivo apoptosis program. Here we report that apoptosis could be induced in TGase2-/- mice; however, the clearance of apoptotic cells was defective during the involution of thymus elicited by dexamethasone, anti-CD3 antibody, or gamma-irradiation, and in the liver after induced hyperplasia. The lack of TGase2 prevented the production of active transforming growth factor-beta1 in macrophages exposed to apoptotic cells, which is required for the up-regulation of TGase2 in the thymus in vivo, for accelerating deletion of CD4+CD8+ cells and for efficient phagocytosis of apoptotic bodies.
View Article and Find Full Text PDF