Publications by authors named "Pier Paolo Parnigotto"

Background: COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) represents the biggest global health emergency in recent decades. The host immune response to SARS-CoV-2 seems to play a key role in disease pathogenesis and clinical manifestations, with Natural Killer (NK) lymphocytes being among the targets of virus-induced regulation.

Methods: This study performed a single-cell multi-omics analysis of transcripts and proteins of NK lymphocytes in COVID-19 patients, for the characterization of the innate immunological response to infection.

View Article and Find Full Text PDF

Severe tracheal injuries that cannot be managed by mobilization and end-to-end anastomosis represent an unmet clinical need and an urgent challenge to face in surgical practice; within this scenario, decellularized scaffolds (eventually bioengineered) are currently a tempting option among tissue engineered substitutes. The success of a decellularized trachea is expression of a balanced approach in cells removal while preserving the extracellular matrix (ECM) architecture/mechanical properties. Revising the literature, many Authors report about different methods for acellular tracheal ECMs development; however, only few of them verified the devices effectiveness by an orthotopic implant in animal models of disease.

View Article and Find Full Text PDF

In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production.

View Article and Find Full Text PDF

S100B is a calcium-binding protein mainly expressed by astrocytes, but also localized in other definite neural and extra-neural cell types. While its presence in biological fluids is widely recognized as a reliable biomarker of active injury, growing evidence now indicates that high levels of S100B are suggestive of pathogenic processes in different neural, but also extra-neural, disorders. Indeed, modulation of S100B levels correlates with the occurrence of clinical and/or toxic parameters in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, muscular dystrophy, multiple sclerosis, acute neural injury, inflammatory bowel disease, uveal and retinal disorders, obesity, diabetes and cancer, thus directly linking the levels of S100B to pathogenic mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Stem cell therapy is emerging as a promising treatment for degenerative diseases, with adult stem cells from sources like cord blood and bone marrow showing significant therapeutic potential.
  • The study focused on circulating multipotent cells (CMCs), cultivating them long-term to induce their differentiation into neuronal and muscle cell types, using various analysis techniques.
  • Results indicated that CMCs successfully adopted characteristics of both neurons and muscle cells, suggesting they possess the necessary qualities for effective cell therapy in regenerative medicine.
View Article and Find Full Text PDF

SARS-CoV-2 infection shows a wide-ranging clinical severity, requiring prognostic markers. We focused on S100B, a calcium-binding protein present in biological fluids, being a reliable biomarker in disorders having inflammatory processes as common basis and RAGE as main receptor. Since Covid-19 is characterized by a potent inflammatory response also involving RAGE, we tested if S100B serum levels were related to disease severity.

View Article and Find Full Text PDF

The crosstalk between human gut microbiota and intestinal wall is essential for the organ's homeostasis and immune tolerance. The gut microbiota plays a role in healthy and pathological conditions mediated by inflammatory processes or by the gut-brain axes, both involving a possible role for S100B protein as a diffusible cytokine present not only in intestinal mucosa but also in faeces. In order to identify target proteins for a putative interaction between S100B and the microbiota proteome, we developed a bioinformatics workflow by integrating the interaction features of known domains with the proteomics data derived from metataxonomic studies of the gut microbiota from healthy and inflammatory bowel disease (IBD) subjects.

View Article and Find Full Text PDF

Nerve wrapping improves neurorrhaphy outcomes in case of peripheral nerve injuries (PNIs). The aim of this preclinical study was to assess the efficacy of two novel biodegradable wraps made of a synthetic 1% oxidized polyvinyl alcohol (OxPVA) and a natural leukocyte-fibrin-platelet membrane (LFPm) versus the commercial product NeuraWrap. After rats sciatic nerve transection and neurorrhaphy, the wraps were implanted and compared for functional outcome, by sciatic function index assessment; structural characteristics, by histological/immunohistochemical analysis; ultrastructural features, by transmission electron microscopy.

View Article and Find Full Text PDF

Background: Tissue expanders are widely utilized in plastic surgery. Traditional expanders usually are "inflatable balloons," which are planned to grow additional skin and/or to create space to be filled, for example, with an implant. In very recent years, reports suggest that negative pressure created by an external device (ie, Brava) induces both skin expansion and adipogenesis.

View Article and Find Full Text PDF

Functionalized synthetic conduits represent a promising strategy to enhance peripheral nerve regeneration by guiding axon growth while delivering therapeutic neurotrophic factors. In this work, hollow nerve conduits made of polyvinyl alcohol partially oxidized with bromine (OxPVA_Br) and potassium permanganate (OxPVA_KMnO) were investigated for their structural/biological properties and ability to absorb/release the ciliary neurotrophic factor (CNTF). Chemical oxidation enhanced water uptake capacity of the polymer, with maximum swelling index of 60.

View Article and Find Full Text PDF

Nowadays, research in Tissue Engineering and Regenerative Medicine is focusing on the identification of instructive scaffolds to address the requirements of both clinicians and patients to achieve prompt and adequate healing in case of injury. Among biomaterials, hemocomponents, and in particular Platelet-rich Fibrin matrices, have aroused widespread interest, acting as delivery platforms for growth factors, cytokines and immune/stem-like cells for immunomodulation; their autologous origin and ready availability are also noteworthy aspects, as safety- and cost-related factors and practical aspects make it possible to shorten surgical interventions. In fact, several authors have focused on the use of Platelet-rich Fibrin in cartilage and tendon tissue engineering, reporting an increasing number of in vitro, pre-clinical and clinical studies.

View Article and Find Full Text PDF

Pediatric Short Bowel Syndrome is a rare malabsorption disease occurring because of massive surgical resections of the small intestine. To date, the issues related to current strategies including intestinal transplantation prompted the attention towards tissue engineering (TE). This work aimed to develop and compare two composite scaffolds for intestinal TE consisting of a novel hydrogel, that is, oxidized polyvinyl alcohol (OxPVA), cross-linked with decellularized intestinal wall as a whole (wW/OxPVA) or homogenized (hW/OxPVA).

View Article and Find Full Text PDF

Autologous platelet-rich hemocomponents have emerged as potential biologic tools for regenerative purpose, but their therapeutic efficacy still remains controversial. This work represents the characterization study of an innovative autologous leukocyte-fibrin-platelet membrane (LFPm), which we prepared according to a novel protocol involving multiple cycles of apheresis. The high content in fibrinogen gave to our hemocomponent the appearance of a manipulable and suturable membrane with high elasticity and deformation capacity.

View Article and Find Full Text PDF

Surgical reconstruction of peripheral nerves injuries with wide substance-loss is still a challenge. Many studies focused on the development of artificial nerve conduits made of synthetic or biological materials but the ideal device has not yet been identified. Here, we manufactured a conduit for peripheral nerve regeneration using a novel biodegradable hydrogel we patented that is oxidized polyvinyl alcohol (OxPVA).

View Article and Find Full Text PDF

The wound healing is a complex process wherein inflammation, proliferation and regeneration evolve according to a spatio-temporal pattern from the activation of coagulation cascade to the formation of a plug clot including fibrin matrix, blood-borne cells and cytokines/growth factors. Creating environments conducive to tissue repair, the haemoderivatives are commonly proposed for the treatment of hard-to-heal wounds. Here, we explored in vitro the intrinsic regenerative potentialities of a leucocyte- and platelet-rich fibrin product, known as CPL-MB, defining the stemness grade of cells sprouting from the haemoderivative.

View Article and Find Full Text PDF

The pituitary gland is an organ that functionally connects the hypothalamus with the peripheral organs. The pituitary gland is an important regulator of body homeostasis during development, stress, and other processes. Pituitary adenomas are a group of tumors arising from the pituitary gland: they may be subdivided in functional or non-functional, depending on their hormonal activity.

View Article and Find Full Text PDF

Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition.

View Article and Find Full Text PDF

In regenerative neurobiology, Ciliary Neurotrophic Factor (CNTF) is raising high interest as a multifunctional neurocytokine, playing a key role in the regeneration of injured peripheral nerves. Despite its promising trophic and regulatory activity, its clinical application is limited by the onset of severe side effects, due to the lack of efficient intracellular trafficking after administration. In this study, recombinant CNTF linked to the transactivator transduction domain (TAT) was investigated in vitro and found to be an optimized fusion protein which preserves neurotrophic activity, besides enhancing cellular uptake for therapeutic advantage.

View Article and Find Full Text PDF

Aim: We aimed to set up a self-standing, biomimetic scaffold system able to induce and support per se neuronal differentiation of autologous multipotent cells.

Materials & Methods: We isolated a population of human circulating multipotent cells (hCMCs), and used carbon nanotube/polymer nanocomposite scaffolds to mimic electrical/nanotopographical features of the neural environment, and biomimetic peptides reproducing axon guidance cues from neural proteins.

Results: hCMCs showed high degree of stemness and multidifferentiative potential; stimuli from the scaffolds and biomimetic peptides could induce and boost hCMC differentiation toward neuronal lineage despite the absence of exogenously added, specific growth factors.

View Article and Find Full Text PDF

Haemophilic arthropathy is the major cause of disability in patients with haemophilia and, despite prophylaxis with coagulation factor concentrates, some patients still develop articular complications. We evaluate the feasibility of a tissue engineering approach to improve current clinical strategies for cartilage regeneration in haemophiliacs by using autologous chondrocytes (haemophilic chondrocytes; HaeCs). Little is known about articular chondrocytes from haemophilic patients and no characterisation has as yet been performed.

View Article and Find Full Text PDF

In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling.

View Article and Find Full Text PDF

The desired clinical outcome after implantation of engineered tissue substitutes depends strictly on the development of biodegradable scaffolds. In this study we fabricated 1% and 2% oxidized polyvinyl alcohol (PVA) hydrogels, which were considered for the first time for tissue-engineering applications. The final aim was to promote the protein release capacity and biodegradation rate of the resulting scaffolds in comparison with neat PVA.

View Article and Find Full Text PDF

Introduction: Inflammatory bowel diseases (IBD) are complex multi-factorial diseases with increasing incidence worldwide but their treatment is far from satisfactory. Unconventional strategies have consequently been investigated, proposing the use of cells as an effective alternative approach to IBD. In the present study we examined the protective potential of exogenously administered human umbilical cord derived mesenchymal stem cells (UCMSCs) against Dextran Sulfate Sodium (DSS) induced acute colitis in immunodeficient NOD.

View Article and Find Full Text PDF

Articular cartilage lesions are a particular challenge for regenerative medicine due to cartilage low self-ability repair in case of damage. Hence, a significant goal of musculoskeletal tissue engineering is the development of suitable structures in virtue of their matrix composition and biomechanical properties. The objective of our study was to design in vitro a supporting structure for autologous chondrocyte growth.

View Article and Find Full Text PDF