Publications by authors named "Pier L Martelli"

Motivation: The knowledge of protein stability upon residue variation is an important step for functional protein design and for understanding how protein variants can promote disease onset. Computational methods are important to complement experimental approaches and allow a fast screening of large datasets of variations.

Results: In this work we present DDGemb, a novel method combining protein language model embeddings and transformer architectures to predict protein ΔΔG upon both single- and multi-point variations.

View Article and Find Full Text PDF

The Genetics of Neurodevelopmental Disorders Lab in Padua provided a new intellectual disability (ID) Panel challenge for computational methods to predict patient phenotypes and their causal variants in the context of the Critical Assessment of the Genome Interpretation, 6th edition (CAGI6). Eight research teams submitted a total of 30 models to predict phenotypes based on the sequences of 74 genes (VCF format) in 415 pediatric patients affected by Neurodevelopmental Disorders (NDDs). NDDs are clinically and genetically heterogeneous conditions, with onset in infant age.

View Article and Find Full Text PDF

Recent thermodynamic and functional studies have been conducted to evaluate the impact of amino acid substitutions on Calmodulin (CaM). The Critical Assessment of Genome Interpretation (CAGI) data provider at University of Verona (Italy) measured the melting temperature (T) and the percentage of unfolding (%unfold) of a set of CaM variants (CaM challenge dataset). Thermodynamic measurements for the equilibrium unfolding of CaM were obtained by monitoring far-UV Circular Dichroism as a function of temperature.

View Article and Find Full Text PDF

In order to shed light on the usage of protein language model-based alignment procedures, we attempted the classification of Glutathione S-transferases (GST; EC 2.5.1.

View Article and Find Full Text PDF

Knowledge of the solvent accessibility of residues in a protein is essential for different applications, including the identification of interacting surfaces in protein-protein interactions and the characterization of variations. We describe E-pRSA, a novel web server to estimate Relative Solvent Accessibility values (RSAs) of residues directly from a protein sequence. The method exploits two complementary Protein Language Models to provide fast and accurate predictions.

View Article and Find Full Text PDF
Article Synopsis
  • - This paper evaluates predictions for the "HMBS" challenge from the 2021 Critical Assessment of Genome Interpretation, focusing on how well participants predicted the effects of missense variants in the HMBS gene on yeast growth.
  • - Despite using various algorithms, most predictors showed similar performance with correlation coefficients around 0.3, though some top predictors had a slightly better median correlation of ≥ 0.34 with experimental results.
  • - Predictors were moderately effective in distinguishing between harmful and harmless variants, but overall accuracy remained low compared to experimental controls, highlighting a need for significant improvements in prediction methods, especially for variants in specific regions like the insertion loop.
View Article and Find Full Text PDF

Brucellosis is an economically important zoonotic disease affecting humans, livestock, and wildlife health globally and especially in Africa. Brucella abortus and B. melitensis have been isolated from human, livestock (cattle and goat), and wildlife (sable) in South Africa (SA) but with little knowledge of the population genomic structure of this pathogen in SA.

View Article and Find Full Text PDF

Critical evaluation of computational tools for predicting variant effects is important considering their increased use in disease diagnosis and driving molecular discoveries. In the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, a dataset of 28 STK11 rare variants (27 missense, 1 single amino acid deletion), identified in primary non-small cell lung cancer biopsies, was experimentally assayed to characterize computational methods from four participating teams and five publicly available tools. Predictors demonstrated a high level of performance on key evaluation metrics, measuring correlation with the assay outputs and separating loss-of-function (LoF) variants from wildtype-like (WT-like) variants.

View Article and Find Full Text PDF

Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction.

View Article and Find Full Text PDF

Continued advances in variant effect prediction are necessary to demonstrate the ability of machine learning methods to accurately determine the clinical impact of variants of unknown significance (VUS). Towards this goal, the ARSA Critical Assessment of Genome Interpretation (CAGI) challenge was designed to characterize progress by utilizing 219 experimentally assayed missense VUS in the () gene to assess the performance of community-submitted predictions of variant functional effects. The challenge involved 15 teams, and evaluated additional predictions from established and recently released models.

View Article and Find Full Text PDF

We develop a novel database Alpha&ESMhFolds which allows the direct comparison of AlphaFold2 and ESMFold predicted models for 42,942 proteins of the Reference Human Proteome, and when available, their comparison with 2,900 directly associated PDB structures with at least a structure to sequence coverage of 70%. Statistics indicate that good quality models tend to overlap with a TM-score >0.6 as long as some PDB structural information is available.

View Article and Find Full Text PDF

Background: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating.

View Article and Find Full Text PDF

Coiled-coil domains (CCDs) are structural motifs observed in proteins in all organisms that perform several crucial functions. The computational identification of CCD segments over a protein sequence is of great importance for its functional characterization. This task can essentially be divided into three separate steps: the detection of segment boundaries, the annotation of the heptad repeat pattern along the segment, and the classification of its oligomerization state.

View Article and Find Full Text PDF

MultifacetedProtDB is a database of multifunctional human proteins deriving information from other databases, including UniProt, GeneCards, Human Protein Atlas (HPA), Human Phenotype Ontology (HPO) and MONDO. It collects under the label 'multifaceted' multitasking proteins addressed in literature as pleiotropic, multidomain, promiscuous (in relation to enzymes catalysing multiple substrates) and moonlighting (with two or more molecular functions), and difficult to be retrieved with a direct search in existing non-specific databases. The study of multifunctional proteins is an expanding research area aiming to elucidate the complexities of biological processes, particularly in humans, where multifunctional proteins play roles in various processes, including signal transduction, metabolism, gene regulation and cellular communication, and are often involved in disease insurgence and progression.

View Article and Find Full Text PDF

Background: A major obstacle faced by rare disease families is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years, and causal variants are identified in under 50%. The Rare Genomes Project (RGP) is a direct-to-participant research study on the utility of genome sequencing (GS) for diagnosis and gene discovery.

View Article and Find Full Text PDF
Article Synopsis
  • The Genetics of Neurodevelopmental Disorders Lab in Padua launched the ID-challenge as part of CAGI6, allowing teams to develop computational methods for predicting patient phenotypes and their genetic causes.
  • Eight research teams worked with genetic data from 415 pediatric patients with Neurodevelopmental Disorders (NDDs), focusing on the sequences of 74 genes to improve phenotype prediction accuracy.
  • The study aimed to identify new genetic causes for patients lacking a diagnosis by analyzing clinical features and known variants, using past data from CAGI5 to aid in their predictions.
View Article and Find Full Text PDF

Motivation: Coiled-coil domains (CCD) are widespread in all organisms and perform several crucial functions. Given their relevance, the computational detection of CCD is very important for protein functional annotation. State-of-the-art prediction methods include the precise identification of CCD boundaries, the annotation of the typical heptad repeat pattern along the coiled-coil helices as well as the prediction of the oligomerization state.

View Article and Find Full Text PDF

Recently, prediction of structural/functional motifs in protein sequences takes advantage of powerful machine learning based approaches. Protein encoding adopts protein language models overpassing standard procedures. Different combinations of machine learning and encoding schemas are available for predicting different structural/functional motifs.

View Article and Find Full Text PDF

The knowledge of protein-protein interaction sites (PPIs) is crucial for protein functional annotation. Here we address the problem focusing on the prediction of putative PPIs considering as input protein sequences. The issue is important given the huge volume of protein sequences compared to experimental and/or computed structures.

View Article and Find Full Text PDF

Collectively, rare genetic disorders affect a substantial portion of the world's population. In most cases, those affected face difficulties in receiving a clinical diagnosis and genetic characterization. The understanding of the molecular mechanisms of these diseases and the development of therapeutic treatments for patients are also challenging.

View Article and Find Full Text PDF

Termites (Insecta, Blattodea, Termitoidae) are a widespread and diverse group of eusocial insects known for their ability to digest wood matter. Herein, we report the draft genome of the subterranean termite Reticulitermes lucifugus, an economically important species and among the most studied taxa with respect to eusocial organization and mating system. The final assembly (~813 Mb) covered up to 88% of the estimated genome size and, in agreement with the Asexual Queen Succession Mating System, it was found completely homozygous.

View Article and Find Full Text PDF

According to databases such as OMIM, Humsavar, Clinvar and Monarch, 1494 human enzymes are presently associated to 2539 genetic diseases, 75% of which are rare (with an Orphanet code). The Mondo ontology initiative allows a standardization of the disease name into specific codes, making it possible a computational association between genes, variants, diseases, and their effects on biological processes. Here, we tackle the problem of which biological processes enzymes can affect when the protein variant is disease-associated.

View Article and Find Full Text PDF

Motivation: The advent of massive DNA sequencing technologies is producing a huge number of human single-nucleotide polymorphisms occurring in protein-coding regions and possibly changing their sequences. Discriminating harmful protein variations from neutral ones is one of the crucial challenges in precision medicine. Computational tools based on artificial intelligence provide models for protein sequence encoding, bypassing database searches for evolutionary information.

View Article and Find Full Text PDF

The recent biotechnological progress has allowed life scientists and physicians to access an unprecedented, massive amount of data at all levels (molecular, supramolecular, cellular and so on) of biological complexity. So far, mostly classical computational efforts have been dedicated to the simulation, prediction or de novo design of biomolecules, in order to improve the understanding of their function or to develop novel therapeutics. At a higher level of complexity, the progress of omics disciplines (genomics, transcriptomics, proteomics and metabolomics) has prompted researchers to develop informatics means to describe and annotate new biomolecules identified with a resolution down to the single cell, but also with a high-throughput speed.

View Article and Find Full Text PDF

Grouping residue variations in a protein according to their physicochemical properties allows a dimensionality reduction of all the possible substitutions in a variant with respect to the wild type. Here, by using a large dataset of proteins with disease-related and benign variations, as derived by merging Humsavar and ClinVar data, we investigate to which extent our physicochemical grouping procedure can help in determining whether patterns of variation types are related to specific groups of diseases and whether they occur in Pfam and/or InterPro gene domains. Here, we download 75,145 germline disease-related and benign variations of 3,605 genes, group them according to physicochemical categories and map them into Pfam and InterPro gene domains.

View Article and Find Full Text PDF