Publications by authors named "Pier Francesca Porceddu"

Glycogen-synthase kinase 3 (GSK3) is a kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK3 has been linked to several disease conditions such as fragile X syndrome (FXS). Recent evidences demonstrating an increased activity of GSK3 in murine models of FXS, suggest that dysregulation/hyperactivation of the GSK3 path should contribute to FXS development.

View Article and Find Full Text PDF

Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is a neurodevelopmental disorder, characterized by intellectual disability and sensory deficits, caused by epigenetic silencing of the FMR1 gene and subsequent loss of its protein product, fragile X mental retardation protein (FMRP). Delays in synaptic and neuronal development in the cortex have been reported in FXS mouse models; however, the main goal of translating lab research into pharmacological treatments in clinical trials has been so far largely unsuccessful, leaving FXS a still incurable disease. Here, we generated 2D and 3D in vitro human FXS model systems based on isogenic FMR1 knock-out mutant and wild-type human induced pluripotent stem cell (hiPSC) lines.

View Article and Find Full Text PDF

Glycogen synthase kinase 3β (GSK-3β) is a serine/threonine protein kinase mediating phosphorylation on serine and threonine amino acid residues of several target molecules. The enzyme is involved in the regulation of many cellular processes and aberrant activity of GSK-3β has been linked to several disease conditions. There is now large evidence on the role of GSK-3β in the pathophysiology of mood disturbances with special regard to bipolar disorders.

View Article and Find Full Text PDF

Bipolar disorders still represent a global unmet medical need and pose a requirement for novel effective treatments. In this respect, glycogen synthase kinase 3β (GSK-3β) aberrant activity has been linked to the pathophysiology of several disease conditions, including mood disorders. Therefore, the development of GSK-3β inhibitors with good efficacy and safety profile associated with high brain exposure is required.

View Article and Find Full Text PDF

Ras homolog enriched in striatum (Rhes) is a protein that exerts important physiological functions and modulates psychostimulant drug effects. On this basis, the object of this study was to assess 3,4-methylenedioxymethamphetamine (MDMA) effects on microglial (CD11b) and astroglial (GFAP) activation and on dopamine neuron degeneration (TH) in wild-type (WT) and Rhes knockout (KO) male and female mice of different ages. Motor activity was also evaluated.

View Article and Find Full Text PDF

We have recently shown that male Rhes knockout (KO) mice develop a mild form of spontaneous Parkinson's disease (PD)-like phenotype, characterized by motor impairment and a decrease in nigrostriatal dopamine (DA) neurons. Experimental evidence has implicated neuroinflammation in PD progression, and the presence of activated glial cells has been correlated with DA neuron degeneration. Despite this, several factors, such as gender, have been found to affect DAergic neuron degeneration and influence neuroinflammation, explaining the differences between men and women in the etiology of PD.

View Article and Find Full Text PDF

Although MDMA (3,4-methylendioxymethamphetamine, ecstasy) neurotoxicity in serotonin neurons is largely recognized in a wide variety of species including man, neurotoxicity in dopamine (DA) neurons is thought to be species-specific. MDMA is mainly consumed by adolescents, often in conjunction with caffeine (Energy Drinks) and this association has been reported to exacerbate MDMA toxic effects. In order to model these aspects of MDMA use, vis-à-vis their impact on DA neurons, we investigated the effects of adolescent exposure to low doses of MDMA (5 mg/kg for 10 days), alone or in combination with caffeine (10 mg/kg) on neuronal and functional DA indices and on recognition memory in adult rats.

View Article and Find Full Text PDF

3,4-methylenedyoxymethamphetamine (MDMA or "ecstasy"), a recreational drug of abuse, can induce glia activation and dopaminergic neurotoxicity. Since MDMA is often consumed in crowded environments featuring high temperatures, we studied how these factors influenced glia activation and dopaminergic neurotoxicity induced by MDMA. C57BL/6J adolescent (4 weeks old) and adult (12 weeks old) mice received MDMA (4×20mg/kg) in different conditions: 1) while kept 1, 5, or 10×cage at room temperature (21°C); 2) while kept 5×cage at either room (21°C) or high (27°C) temperature.

View Article and Find Full Text PDF

Metformin, a well-known antidiabetic drug, has recently been proposed to promote neurogenesis and to have a neuroprotective effect on the neurodegenerative processes induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in models of Parkinson's disease. Interestingly, metformin has antioxidant properties and is involved in regulating the production of cytokines released during the neuroinflammatory process. Several studies have reported that 3,4-methylenedioxymethamphetamine (MDMA), a recreational drug mostly consumed by young adults, produces a persistent loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and caudate putamen (CPu) of mice.

View Article and Find Full Text PDF

Background: Mitochondrial dysfunction, oxidative stress and their interplay are core pathological features of Parkinson's disease. In dopaminergic neurons, monoamines and their metabolites provide an additional source of reactive free radicals during their breakdown by monoamine oxidase or auto-oxidation. Moreover, mitochondrial dysfunction and oxidative stress have a supraadditive impact on the pathological, cytoplasmic accumulation of dopamine and its subsequent release.

View Article and Find Full Text PDF

Amphetamine-related drugs, such as 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH), are popular recreational psychostimulants. Several preclinical studies have demonstrated that, besides having the potential for abuse, amphetamine-related drugs may also elicit neurotoxic and neuroinflammatory effects. The neurotoxic potentials of MDMA and METH to dopaminergic and serotonergic neurons have been clearly demonstrated in both rodents and non-human primates.

View Article and Find Full Text PDF

Previous studies have demonstrated that caffeine administration to adult mice potentiates glial activation induced by 3,4-methylenedioxymethamphetamine (MDMA). As neuroinflammatory response seems to correlate with neurodegeneration, and the young brain is particularly vulnerable to neurotoxicity, we evaluated dopamine neuron degeneration and glial activation in the caudate-putamen (CPu) and substantia nigra pars compacta (SNc) of adolescent and adult mice. Mice were treated with MDMA (4 × 20 mg/kg), alone or with caffeine (10 mg/kg).

View Article and Find Full Text PDF