The impact of neuroinflammation and microglial activation to Parkinson's disease (PD) progression is still debated. Post-mortem analysis of PD brains has shown that neuroinflammation and microgliosis are key features of end-stage disease. However, microglia neuroimaging studies and evaluation of cerebrospinal fluid (CSF) cytokines in PD patients at earlier stages do not support the occurrence of a pronounced neuroinflammatory process.
View Article and Find Full Text PDFBackground/aim: Evidence suggests that zoledronic acid (ZA) exerts direct antitumor effects on cancer cells but the underlying mechanisms of these actions are unknown. This study investigated the possible involvement of survivin in the antiproliferative effects of ZA in prostate cancer.
Materials And Methods: 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT) dye reduction assay was used to assess cell viability and acridine orange/ethidium bromide double staining to analyze cell death.
NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes.
View Article and Find Full Text PDFActivation of the nuclear factor κB/c-Rel can increase neuronal resilience to pathological noxae by regulating the expression of pro-survival manganese superoxide dismutase (MnSOD, now known as SOD2) and Bcl-xL genes. We show here that c-Rel-deficient (c-rel(-/-)) mice developed a Parkinson's disease-like neuropathology with ageing. At 18 months of age, c-rel(-/-) mice exhibited a significant loss of dopaminergic neurons in the substantia nigra pars compacta, as assessed by tyrosine hydroxylase-immunoreactivity and Nissl staining.
View Article and Find Full Text PDFThe molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage.
View Article and Find Full Text PDFIntroduction: The purpose of the study is to understand whether the cholinergic stimulation is important, not only in inducing contraction of the detrusor muscle, but also in modulating the proliferation of smooth muscle cells. These results could help to better understand the role of antimuscarinic drugs, which are currently used for the treatment of many urological diseases.
Patients And Methods: Primary cultures were prepared from biopsies of human detrusor muscle of subjects >65 years.
Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost always mediated by changes in gene expression.
View Article and Find Full Text PDFExposure to psychostimulants results in neuroadaptive changes of the mesencephalic dopaminergic system including morphological reorganization of dopaminergic neurons. Increased dendrite arborization and soma area were previously observed in primary cultures of mesencephalic dopaminergic neurons after 3-day exposure to dopamine agonists via activation of D(3) autoreceptors (D(3) R). In this work, we showed that cocaine significantly increased dendritic arborization and soma area of dopaminergic neurons from E12.
View Article and Find Full Text PDFIt has been estimated that at least 50% of the drugs available on the market act on G-protein coupled receptors (GPCRs) and most of these are basically or agonists or antagonists of this type of receptors. Herein, we propose new putative targets for drug development based on recent data on GPCR allosterism and on the existence of receptor mosaics (RMs). The main target for drug development is still GPCRs, but the focus is not the orthosteric binding pocket.
View Article and Find Full Text PDF