Publications by authors named "Pier Cosimo Magherini"

Activation of endothelin receptors expressed in DRG neurons is functionally coupled to translocation of PKCε from cytoplasm to the plasma membrane. Using immunocytochemistry we show that in DRG cultured neurons PKCε translocation induced by endothelin-1 was prominently seen in a peptidergic subpopulation of cultured DRG neurons largely negative for isolectin B4 staining, indicating that in basal conditions functional expression of endothelin receptors does not occur in non-peptidergic, RET-expressing nociceptors. Translocation was blocked by the specific ETA-R antagonist BQ-123 while it was unaffected by the ETB-R antagonist BQ-788.

View Article and Find Full Text PDF

The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.

View Article and Find Full Text PDF

N-arachidonoylethanolamine (anandamide, AEA), is a full agonist at both cannabinoid CB(1) receptors and "transient receptor potential vanilloid" type 1 (TRPV1) channels, and N-palmitoylethanolamine (PEA) potentiates these effects. In neurons of the rat dorsal root ganglia (DRG), TRPV1 is activated and/or sensitised by AEA as well as upon activation of protein kinases C (PKC) and A (PKA). We investigated here the effect on AEA levels of PKC and PKA activators in DRG neurons.

View Article and Find Full Text PDF

No direct evidence has been found for expression of functional AMPA receptors by dorsal root ganglion neurons despite immunocytochemical evidence suggesting they are present. Here we report evidence for expression of functional AMPA receptors by a subpopulation of dorsal root ganglion neurons. The AMPA receptors are most prominently located near central terminals of primary afferent fibers.

View Article and Find Full Text PDF