J Funct Biomater
June 2024
The present study evaluated the mechanical behavior of five designs of Morse taper (MT) connections with and without the application of loads. For this, the detorque of the fixing screw and the traction force required to disconnect the abutment from the implant were assessed. A total of 100 sets of implants/abutments (IAs) with MT-type connections were used, comprising five groups ( = 20/group): (1) Group Imp 11.
View Article and Find Full Text PDFInt J Oral Maxillofac Implants
December 2024
Purpose: To examine the impact of two implant designs that promote different insertion torque values on implant stability and to histomorphometrically evaluate the bone healing after immediate implant placement in fresh sockets in a sheep model.
Materials And Methods: Twelve female sheep (mean weight: 35.0 ± 5.
The present study compared three different implant and abutment sets of type Morse taper (MT) connection, with- and without-index, were analyzed regarding their mechanical behavior without and with cyclic load application simulating the masticatory function. Ninety implant and abutment (IA) sets were used in the present study, divided into three groups (n = 30 samples per group): Group A, Ideale solid straight abutment (one piece) without index; Group B, Ideale abutment with an angle of 30-degree (two pieces) without index; Group C, Ideale abutment with an angle of 30-degree (two pieces) with index. The abutment stability quotient (ASQ) values, detorque value and rotation angle were measured before and after the cycling load.
View Article and Find Full Text PDFBackground: The goal of this in vitro study was to compare three different surfaces: two types of implant surfaces commercially available ([a] smooth/machined and [b] acid-treated surface) (c) anodized surface. Discs were manufactured with commercially pure titanium (CP) grade IV, which were subsequently analyzed by scanning microscopy and fibroblastic and osteoblastic cell cultures.
Methods: Ninety-nine discs (5 × 2 mm) were manufactured in titanium grade IV and received different surface treatments: (i) Mach group: machined; (ii) AA group: double acid etch; and (iii) AN group: anodizing treatment.
The goal of this in vitro study was to evaluate and propose a new strategy for osseodensification technique using a drill counterclockwise to densification of bone of low density. Synthetic bone blocks of two different low densities (type III and IV) were used for the tests. The conventional drilling group (CD group) used Turbo-drill in a clockwise direction, and the osseodensification group (OD group) applied Turbo-drill in a counterclockwise direction.
View Article and Find Full Text PDFHeliyon
April 2023
Objectives: Micromotion between a dental implant and abutment can adversely affect clinical performance and compromise successful osseointegration by creating a bacterial harbor, enabling screw loosening, and imparting disruptive lateral forces on the cortical bone. Thus, the aim of the present study was to measure the abutment stability evolution using resonance frequency analysis (RFA) in vivo at four different times (baseline, 3, 4, and 12 months), and compare these data obtained with the RFA measured after mechanical cycling (in vitro) corresponding to the proposed times in numbers of cycles.
Methods: To evaluate the abutment stability, RFA was performed in 70 sets of implant/abutment (IA) with a total of 54 patients (31 women, 23 men).
Objective: The aim of the present in vitro study was to evaluate the resistance on quasi-static forces and in the fatigue mechanical cycling of a new implant design compared to two other conventional implant designs.
Materials And Methods: Eighty-eight implants with their respective abutments were tested and distributed into four groups (n = 22 per group): Morse taper connection implant (MT group), conventional external hexagon implant (EH con group), new Collo implant of external hexagon with the smooth portion out of the bone insertion (EH out group), and new Collo implant of external hexagon with the implant platform inserted to the bone level (EH bl group). All the sets were subjected to quasi-static loading in a universal testing machine, and we measured the maximum resistance force supported by each sample.
Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells.
View Article and Find Full Text PDFHydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding natural and synthetic materials.
View Article and Find Full Text PDFA large number of materials with different compositions and shapes have been proposed and studied for the purpose of bone tissue regeneration. Collagen-based materials have shown promising results for this application, with improved physicochemical properties. The aim of the present in vivo animal study was to evaluate and compare two commercially available collagen-based biomaterials for bone regeneration, with these being implanted in circumferential bone defects created in the calvarium of rabbits.
View Article and Find Full Text PDFThe aim of the present in vivo study was to analyze and compare the effects on the crestal bone healing of two different implant macrogeometries installed in fresh socket areas and in normal bone areas with different insertion torque values. Two implant macrogeometries were used in the present study, DuoCone implant (DC) and Maestro implant (MAE), forming four groups: group DCws, in which the implants were installed in healing bone (without a socket); group DCfs, in which the implants were installed in post-extraction areas (fresh sockets); group MAEws, in which the implants were installed in healing bone (without a socket); group MAEfs, in which the implants were installed in post-extraction areas (fresh sockets). After 30 and 90 days of implantations in the bilateral mandibles of 10 sheep, eighty implants were evaluated through digital X-ray images and histologic slices.
View Article and Find Full Text PDFBackground: The ideal installation technique or implant macrogeometry for obtaining an adequate osseointegration in low-density bone tissue follows a challenge in the implantology.
Aims And Objective: The aim of the present study was to evaluate the behavior of three osteotomy techniques and two implant macrogeometries in two low-density polyurethane blocks. The insertion torque (IT), initial stability, pullout resistance, and weight of the residual bone material deposited on the implants were assessed.
Micro-/nano-structured scaffolds with a weight composition of 46.6% α-tricalcium phosphate (α-TCP)-53.4% silicocarnotite (SC) were synthesized by the polymer replica method.
View Article and Find Full Text PDFThe objective of our in vivo study was to compare the effects of the osteotomy on the thermal alterations, the bone healing and count of polymorphonuclear cells, comparing the drill design (cylindrical or conical) using continuous or intermittent movement. Twelve rabbits were used, which were made four osteotomies (n = 2 per tibia) to simulate the surgical drilling sequence for the installation of a dental implant at 8 mm of length and regular diameter. Four groups were proposed: group G1, cylindrical drill with continuous movement; group G2, cylindrical drill with intermittent movement; group G3, conical drill with continuous movement; and, group G4, conical drill with intermittent movement.
View Article and Find Full Text PDFObjectives: The propose was to compare this new implant macrogeometry with a control implant with a conventional macrogeometry.
Materials And Methods: Eighty-six conical implants were divided in two groups (n = 43 per group): group control (group CON) that were used conical implants with a conventional macrogeometry and, group test (group TEST) that were used implants with the new macrogeometry. The new implant macrogeometry show several circular healing cambers between the threads, distributed in the implant body.
Mater Sci Eng C Mater Biol Appl
February 2020
Silicophosphate calcium ceramics are widely used in orthopedic and oral surgery applications because of their properties for stimulating bone formation and bone bonding. These bioceramics, together with multipotent undifferentiated adult human mesenchymal stem cells, are serious candidates in the field of bone tissue engineering and regenerative medicine. For this reason, the influence of a novel 30 wt%CaSiO - 70 wt%Ca(PO) ceramic over a primary adult human mesenchymal stem cells culture has been investigated in this study, observing a total colonization of the biomaterial by cells at 21 days.
View Article and Find Full Text PDFThe purpose of the present study was to measure and compare the insertion torque, removal torque, and the implant stability quotient by resonance frequency analysis in different polyurethane block densities of two implant macrogeometries. Four different polyurethane synthetic bone blocks were used with three cortical thickness: Bone 1 with a cortical thickness of 1 mm, Bone 2 with a cortical thickness of 2 mm, Bone 3 with a cortical thickness of 3 mm, and Bone 4, which was totally cortical. Four groups were created in accordance with the implant macrogeometry (n = 10 per group) and surface treatment: G1-regular implant design without surface treatment; G2-regular implant design with surface treatment; G3-new implant design without surface treatment; G4-new implant design with surface treatment.
View Article and Find Full Text PDFCalcium phosphate materials are widely used as bone substitutes due to their bioactive and biodegradable properties. Also, the presence of silicon in their composition seems to improve the bioactivity of the implant and promote bone tissue repair. The aim of this study was to develop a novel ceramic scaffold by partial solid-state sintering method with a composition lying in the field of the Nurse's A-phase-silicocarnotite, in the tricalcium phosphate-dicalcium silicate (TCP-CS) binary system.
View Article and Find Full Text PDFThreads of dental implants with healing chamber configurations have become a target to improve osseointegration. This biomechanical and histometric study aimed to evaluate the influence of implant healing chamber configurations on the torque removal value (RTv), percentage of bone-to-implant contact (BIC%), bone fraction occupancy inside the thread area (BAFO%), and bone and osteocyte density (Ost) in the rabbit tibia after two months of healing. Titanium implants with three different thread configurations were evaluated: Group 1 (G1), with a conventional "v" thread-shaped implant design; Group 2 (G2), with square threads; and Group 3 (G3), the experimental group with longer threads (healing chamber).
View Article and Find Full Text PDFThe physical characteristics of an implant surface can determine and/or facilitate osseointegration processes. In this sense, a new implant surface with microgrooves associated with plus double acid treatment to generate roughness was evaluated and compared in vitro and in vivo with a non-treated (smooth) and double acid surface treatment. Thirty disks and thirty-six conical implants manufactured from commercially pure titanium (grade IV) were prepared for this study.
View Article and Find Full Text PDFMaterials (Basel)
March 2019
The aim of this study was to perform an in vivo histological comparative evaluation of bone formation around titanium (machined and treated surface) and zirconia implants. For the present study were used 50 commercially pure titanium implants grade IV, being that 25 implants with a machined surface (TiM group), 25 implants with a treated surface (TiT group) and, 25 implants were manufactured in pure zirconia (Zr group). The implants ( = 20 per group) were installed in the tibia of 10 rabbits.
View Article and Find Full Text PDFMaterials (Basel)
February 2019
In this work, the physicochemical properties and in vitro bioactivity and cellular viability of two commercially available bovine bone blocks (allografts materials) with different fabrication processes (sintered and not) used for bone reconstruction were evaluated in order to study the effect of the microstructure in the in vitro behavior. Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, mechanical resistance of blocks, mercury porosimetry analysis, in vitro bioactivity, and cell viability and proliferation were performed to compare the characteristics of both allograft materials against a synthetic calcium phosphate block used as a negative control. The herein presented results revealed a very dense structure of the low-porosity bovine bone blocks, which conferred the materials' high resistance.
View Article and Find Full Text PDFThe aim of the study was to evaluate the chemical composition of crushed, extracted human teeth and the quantity of biomaterial that can be obtained from this process. A total of 100 human teeth, extracted due to trauma, decay, or periodontal disease, were analyzed. After extraction, all the teeth were classified, measured, and weighed on a microscale.
View Article and Find Full Text PDFThe aim of this study was to manufacture and evaluate the effect of a biphasic calcium silicophosphate (CSP) scaffold ceramic, coated with a natural demineralized bone matrix (DBM), to evaluate the efficiency of this novel ceramic material in bone regeneration. The DBM-coated CSP ceramic was made by coating a CSP scaffold with gel DBM, produced by the partial sintering of different-sized porous granules. These scaffolds were used to reconstruct defects in rabbit tibiae, where CSP scaffolds acted as the control material.
View Article and Find Full Text PDF