Publications by authors named "Picotti P"

Gap junction intercellular communication (GJIC) between two adjacent cells involves direct exchange of cytosolic ions and small molecules via connexin gap junction channels (GJCs). Connexin GJCs have emerged as drug targets, with small molecule connexin inhibitors considered a viable therapeutic strategy in several diseases. The molecular mechanisms of GJC inhibition by known small molecule connexin inhibitors remain unknown, preventing the development of more potent and connexin-specific therapeutics.

View Article and Find Full Text PDF

Methods to systematically monitor protein complex dynamics are needed. We introduce serial ultrafiltration combined with limited proteolysis-coupled mass spectrometry (FLiP-MS), a structural proteomics workflow that generates a library of peptide markers specific to changes in PPIs by probing differences in protease susceptibility between complex-bound and monomeric forms of proteins. The library includes markers mapping to protein-binding interfaces and markers reporting on structural changes that accompany PPI changes.

View Article and Find Full Text PDF

Personalized treatment for patients with advanced solid tumors critically depends on the deep characterization of tumor cells from patient biopsies. Here, we comprehensively characterize a pan-cancer cohort of 150 malignant serous effusion (MSE) samples at the cellular, molecular, and functional level. We find that MSE-derived cancer cells retain the genomic and transcriptomic profiles of their corresponding primary tumors, validating their use as a patient-relevant model system for solid tumor biology.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the structures of α-synuclein fibrils linked to neurodegenerative disorders, revealing how variations in pH and buffer conditions impact the selection of different fibril polymorphs.
  • The researchers found that within the physiological pH range, polymorph selection is influenced by secondary nucleation mechanisms, even when seeds are present.
  • Additionally, two new polymorphs were identified, highlighting the importance of environmental factors like pH in understanding amyloid aggregation and its implications for disease-relevant research.
View Article and Find Full Text PDF

Extracellularly released molecular inflammasome assemblies -ASC specks- cross-seed Aβ amyloid in Alzheimer's disease. Here we show that ASC governs the extent of inflammation-induced amyloid A (AA) amyloidosis, a systemic disease caused by the aggregation and peripheral deposition of the acute-phase reactant serum amyloid A (SAA) in chronic inflammatory conditions. Using super-resolution microscopy, we found that ASC colocalized tightly with SAA in human AA amyloidosis.

View Article and Find Full Text PDF
Article Synopsis
  • The study reveals how the physical interactome of proteins can change in response to structural alterations, which affects cell behavior and relates to diseases like Parkinson’s.
  • Researchers utilized limited proteolysis-mass spectrometry (LiP-MS) to investigate structure-specific protein-protein interactions (PPIs), successfully identifying known and new interactors of the protein alpha-synuclein, a key player in Parkinson’s disease.
  • The methodology demonstrated can be applied broadly to examine structure-specific interactomes of various proteins, regardless of their modifications or binding states, enhancing our understanding of disease mechanisms.
View Article and Find Full Text PDF

Organisms use organic molecules called osmolytes to adapt to environmental conditions. In vitro studies indicate that osmolytes thermally stabilize proteins, but mechanisms are controversial, and systematic studies within the cellular milieu are lacking. We analyzed Escherichia coli and human protein thermal stabilization by osmolytes in situ and across the proteome.

View Article and Find Full Text PDF

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.

View Article and Find Full Text PDF

For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare.

View Article and Find Full Text PDF

Aging is associated with progressive phenotypic changes. Virtually all cellular phenotypes are produced by proteins, and their structural alterations can lead to age-related diseases. However, we still lack comprehensive knowledge of proteins undergoing structural-functional changes during cellular aging and their contributions to age-related phenotypes.

View Article and Find Full Text PDF

In myelinating Schwann cells, connection between myelin layers is mediated by gap junction channels (GJCs) formed by docked connexin 32 (Cx32) hemichannels (HCs). Mutations in Cx32 cause the X-linked Charcot-Marie-Tooth disease (CMT1X), a degenerative neuropathy without a cure. A molecular link between Cx32 dysfunction and CMT1X pathogenesis is still missing.

View Article and Find Full Text PDF

Mycobacteria and other actinobacteria possess proteasomal degradation pathways in addition to the common bacterial compartmentalizing protease systems. Proteasomal degradation plays a crucial role in the survival of these bacteria in adverse environments. The mycobacterial proteasome interacts with several ring-shaped activators, including the bacterial proteasome activator (Bpa), which enables energy-independent degradation of heat shock repressor HspR.

View Article and Find Full Text PDF

Gap junction channels (GJCs) mediate intercellular communication by connecting two neighbouring cells and enabling direct exchange of ions and small molecules. Cell coupling via connexin-43 (Cx43) GJCs is important in a wide range of cellular processes in health and disease (Churko and Laird, 2013; Liang et al., 2020; Poelzing and Rosenbaum, 2004), yet the structural basis of Cx43 function and regulation has not been determined until now.

View Article and Find Full Text PDF

The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states.

View Article and Find Full Text PDF

The mild oxidative stress induced by low doses of gaseous ozone (O) activates the antioxidant cell response through the nuclear factor erythroid 2-related factor 2 (Nrf2), thus inducing beneficial effects without cell damage. Mitochondria are sensitive to mild oxidative stress and represent a susceptible O target. In this in vitro study, we investigated the mitochondrial response to low O doses in the immortalized, non-tumoral muscle C2C12 cells; a multimodal approach including fluorescence microscopy, transmission electron microscopy and biochemistry was used.

View Article and Find Full Text PDF

Calmodulin (CaM) regulates many ion channels to control calcium entry into cells, and mutations that alter this interaction are linked to fatal diseases. The structural basis of CaM regulation remains largely unexplored. In retinal photoreceptors, CaM binds to the CNGB subunit of cyclic nucleotide-gated (CNG) channels and, thereby, adjusts the channel's Cyclic guanosine monophosphate (cGMP) sensitivity in response to changes in ambient light conditions.

View Article and Find Full Text PDF

Proteins regulate biological processes by changing their structure or abundance to accomplish a specific function. In response to a perturbation, protein structure may be altered by various molecular events, such as post-translational modifications, protein-protein interactions, aggregation, allostery or binding to other molecules. The ability to probe these structural changes in thousands of proteins simultaneously in cells or tissues can provide valuable information about the functional state of biological processes and pathways.

View Article and Find Full Text PDF

During evolution, plants have faced countless stresses of both biotic and abiotic nature developing very effective mechanisms able to perceive and counteract adverse signals. The biggest challenge is the ability to fine-tune the trade-off between plant growth and stress resistance. The Antarctic plant has managed to survive the adverse environmental conditions of the white continent and can be considered a wonderful example of adaptation to prohibitive conditions for millions of other plant species.

View Article and Find Full Text PDF

Calreticulin (CALR) is an endoplasmic reticulum (ER)-retained chaperone that assists glycoproteins in obtaining their structure. CALR mutations occur in patients with myeloproliferative neoplasms (MPNs), and the ER retention of CALR mutants (CALR MUT) is reduced due to a lacking KDEL sequence. Here, we investigate the impact of CALR mutations on protein structure and protein levels in MPNs by subjecting primary patient samples and CALR-mutated cell lines to limited proteolysis-coupled mass spectrometry (LiP-MS).

View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors.

View Article and Find Full Text PDF

Metabolite-protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite-protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis-mass spectrometry (LiP-MS), which detects proteome-wide metabolite-protein and drug-protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP-MS experiment to detect small molecule-protein interactions, either in a single-dose (LiP-SMap) or a multiple-dose (LiP-Quant) format.

View Article and Find Full Text PDF

The vast majority of our knowledge regarding cancer radiobiology and the activation of radioresistance mechanisms emerged from studies using external beam radiation therapy (EBRT). Yet, less is known about the cancer response to internal targeted radionuclide therapy (TRT). Our comparative phosphoproteomics analyzed cellular responses to TRT with lutetium-177-labeled minigastrin analogue [Lu]Lu-PP-F11N (β-emitter) and EBRT (ɣ-rays) in CCKBR-positive cancer cells.

View Article and Find Full Text PDF