The ability of rodents to effectively navigate in an environment is based on trial-and-error learning and flexible decision-making and can be analyzed via navigational trajectories. We present a protocol for studying the deployment of search strategies in mice using the Morris water maze. We describe steps for assigning mice to different maze variations and procedures for post-training tracking and analysis.
View Article and Find Full Text PDFHigh-penetrance mutations affecting mental health can involve genes ubiquitously expressed in the brain. Whether the specific patterns of dysfunctions result from ubiquitous circuit deficits or might reflect selective vulnerabilities of targetable subnetworks has remained unclear. Here, we determine how loss of ubiquitously expressed fragile X mental retardation protein (FMRP), the cause of fragile X syndrome, affects brain networks in Fmr1y/- mice.
View Article and Find Full Text PDFNavigation tasks involve the gradual selection and deployment of increasingly effective searching procedures to reach targets. The brain mechanisms underlying such complex behavior are poorly understood, but their elucidation might provide insights into the systems linking exploration and decision making in complex learning. Here, we developed a trial-by-trial goal-related search strategy analysis as mice learned to navigate identical water mazes encompassing distinct goal-related rules and monitored the strategy deployment process throughout learning.
View Article and Find Full Text PDFAdaptive behavior requires flexible control over learning and exploitation of potentially viable options. Within a particular task, careful learning of strategies that differ from the initially learned rule is especially important as it sets an individual's strategy repertoire. However, whether and how such strategy updating is mediated by specific brain networks has remained unclear.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) involves genetic and environmental components. The underlying circuit mechanisms are unclear, but behaviorally, aversion toward unfamiliarity, a hallmark of autism, might be involved. Here, we show that in Shank3 ASD model mice, exposure to novel environments lacking familiar features produces long-lasting failure to engage and repetitive behaviors upon re-exposure.
View Article and Find Full Text PDFAlthough sensitizing processes occur earlier, schizophrenia is diagnosed in young adulthood, which suggests that it might involve a pathological transition during late brain development in predisposed individuals. Parvalbumin (PV) interneuron alterations have been noticed, but their role in the disease is unclear. Here we demonstrate that adult LgDel mice, a genetic model of schizophrenia, exhibit PV neuron hypo-recruitment and associated chronic PV neuron plasticity together with network and cognitive deficits.
View Article and Find Full Text PDFChromosome 22q11.2 deletion syndrome (22q11.2DS) is a genetic disease associated with an increased risk for schizophrenia and a specific cognitive profile.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFCold Spring Harb Symp Quant Biol
July 2019
Parvalbumin (PV) basket cells are widespread local interneurons that inhibit principal neurons and each other through perisomatic boutons. They enhance network function and regulate local ensemble activities, particularly in the γ range. Organized network activity is critically important for long-term memory consolidation during a late time window 11-15 h after acquisition.
View Article and Find Full Text PDFLearning is accompanied by temporal compression and sharpening of neuronal firing sequences. In this issue of Neuron, Adler et al. (2019), using a motor skill paradigm and its variant, uncover a dual role for somatostatin interneuron regulation to support ensemble compaction and protection in learning.
View Article and Find Full Text PDFRepeated experiences may be integrated in succession during a learning process, or they may be combined as a whole within dedicated time windows to possibly promote quality control. Here we show that in Pavlovian, incremental and incidental learning, related information acquired within time windows of 5 h is combined to determine what mice learn. Trials required for learning had to occur within 5 h, when learning-related shared cues could produce association and interference.
View Article and Find Full Text PDFIn the version of this article initially published, the right panel in Fig. 2b was duplicated from the corresponding panel in Fig. 2c, and some data points in Fig.
View Article and Find Full Text PDFPrefrontal cortical areas mediate flexible adaptive control of behavior, but the specific contributions of individual areas and the circuit mechanisms through which they interact to modulate learning have remained poorly understood. Using viral tracing and pharmacogenetic techniques, we show that prelimbic (PreL) and infralimbic cortex (IL) exhibit reciprocal PreL↔IL layer 5/6 connectivity. In set-shifting tasks and in fear/extinction learning, activity in PreL is required during new learning to apply previously learned associations, whereas activity in IL is required to learn associations alternative to previous ones.
View Article and Find Full Text PDFNat Neurosci
December 2016
Learning and memory are associated with the formation and modification of neuronal assemblies: populations of neurons that encode what has been learned and mediate memory retrieval upon recall. Functional studies of neuronal assemblies have progressed dramatically thanks to recent technological advances. Here we discuss how a focus on assembly formation and consolidation has provided a powerful conceptual framework to relate mechanistic studies of synaptic and circuit plasticity to behaviorally relevant aspects of learning and memory.
View Article and Find Full Text PDFSH3 and multiple ankyrin repeat domains 3 (SHANK3) haploinsufficiency is causative for the neurological features of Phelan-McDermid syndrome (PMDS), including a high risk of autism spectrum disorder (ASD). We used unbiased, quantitative proteomics to identify changes in the phosphoproteome of Shank3-deficient neurons. Down-regulation of protein kinase B (PKB/Akt)-mammalian target of rapamycin complex 1 (mTORC1) signaling resulted from enhanced phosphorylation and activation of serine/threonine protein phosphatase 2A (PP2A) regulatory subunit, B56β, due to increased steady-state levels of its kinase, Cdc2-like kinase 2 (CLK2).
View Article and Find Full Text PDFLong-term consolidation of memories depends on processes occurring many hours after acquisition. Whether this involves plasticity that is specifically required for long-term consolidation remains unclear. We found that learning-induced plasticity of local parvalbumin (PV) basket cells was specifically required for long-term, but not short/intermediate-term, memory consolidation in mice.
View Article and Find Full Text PDFIt has recently become possible to investigate connectivities and roles of identified hippocampal GABAergic interneurons (INs) in behaving rodents. INs targeting distinct pyramidal neuron subcompartments are recruited dynamically at defined phases of behavior and learning. They include Parvalbumin Axo-axonic and perisomatic Basket cells, and Somatostatin radiatum-oriens and oriens-lacunosum moleculare cells.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2015
Local inhibitory Parvalbumin (PV)-expressing Basket cell networks shift to one of two possible opposite configurations depending on whether behavioral learning involves acquisition of new information or consolidation of validated rules. This reflects the existence of PV Basket cell subpopulations with distinct schedules of neurogenesis, output target neurons and roles in learning. Plasticity of hippocampal early-born PV neurons is recruited in rule consolidation, whereas plasticity of late-born PV neurons is recruited in new information acquisition.
View Article and Find Full Text PDFNeurodegenerative diseases (NDDs) involve years of gradual preclinical progression. It is widely anticipated that in order to be effective, treatments should target early stages of disease, but we lack conceptual frameworks to identify and treat early manifestations relevant to disease progression. Here we discuss evidence that a focus on physiological features of neuronal subpopulations most vulnerable to NDDs, and how those features are affected in disease, points to signaling pathways controlling excitation in selectively vulnerable neurons, and to mechanisms regulating calcium and energy homeostasis.
View Article and Find Full Text PDFBrain networks can support learning by promoting acquisition of task-relevant information or by adhering to validated rules, but the mechanisms involved are poorly understood. Upon learning, local inhibitory parvalbumin (PV)-expressing Basket cell networks can switch to opposite configurations that either favor or interfere with further learning, but how this opposite plasticity is induced and relates to distinct learning requirements has remained unclear. Here, we show that PV Basket cells consist of hitherto unrecognized subpopulations, with distinct schedules of neurogenesis, input connectivities, output target neurons, and roles in learning.
View Article and Find Full Text PDFLearning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others.
View Article and Find Full Text PDFUsing computational models of motor neuron ion fluxes, firing properties, and energy requirements, Le Masson et al. (2014) reveal how local imbalances in energy homeostasis may self-amplify and contribute to neurodegeneration in ALS.
View Article and Find Full Text PDFLearning and memory processes can be influenced by recent experience, but the mechanisms involved are poorly understood. Enhanced plasticity during critical periods of early life is linked to differentiating parvalbumin (PV)-interneuron networks, suggesting that recent experience may modulate learning by targeting the differentiation state of PV neurons in the adult. Here we show that environmental enrichment and Pavlovian contextual fear conditioning induce opposite, sustained and reversible hippocampal PV-network configurations in adult mice.
View Article and Find Full Text PDF