Publications by authors named "Pichtel J"

Arsenic (As) is a metalloid pollutant that is extensively distributed in the biosphere. As is among the most prevalent and toxic elements in the environment; it induces adverse effects even at low concentrations. Due to its toxic nature and bioavailability, the presence of As in soil and water has prompted numerous agricultural, environmental, and health concerns.

View Article and Find Full Text PDF

Marigolds (Tagetes erecta L.) were evaluated for phytoremediation potential of cadmium (Cd) and zinc (Zn) as a function of amendment application to soil. Vermicompost (V), biodigestate (Bi), and combined V + Bi (VBi) were used as soil amendments in Zn and Cd co-contaminated soils.

View Article and Find Full Text PDF

Necrophagous flies may be effective bioindicators of chemical substances within polluted locations, as they are sensitive to environmental changes, have large populations, and thrive in a single location over their lifespan. Diversity and abundance of necrophagous flies were determined at livestock farms contaminated with potentially toxic elements (PTEs) in Tak Province and Nakhon Sawan Province, Thailand. Substantial soil zinc (Zn) concentrations (> 1100 mg kg) were detected at a cattle farm at Khaothong, Nakhon Sawan Province, and soil cadmium (Cd) values were significantly elevated (> 3 mg kg) at a cattle farm in Pha De, Tak Province.

View Article and Find Full Text PDF

Intensive use of chemical pesticides in agriculture poses environmental risks and may have negative impacts on agricultural productivity. The potential phytotoxicity of two chemical pesticides, chlorpyrifos (CPS) and fensulfothion (FSN), were evaluated using Cicer arietinum and Allium cepa as model crops. Different concentrations (0-100 μgmL) of both CPS and FSN decreased germination and biological attributes of C.

View Article and Find Full Text PDF

Drought stress substantially impedes crop productivity throughout the world. Microbial based approaches have been considered a potential possibility and are under study. Based on our prior screening examination, two distinct and novel biofilm-forming PGPR strains namely -FAB1 and -FAP3 are encompassed in this research.

View Article and Find Full Text PDF

In efforts to improve plant productivity and enhance defense mechanisms against biotic and abiotic stresses, endophytic bacteria have been used as an alternative to chemical fertilizers and pesticides. In the current study, 25 endophytic microbes recovered from plant organs of L. (wheat) were assessed for biotic (phyto-fungal pathogens) and abiotic (salinity, drought, and heavy metal) stress tolerance.

View Article and Find Full Text PDF

Water pollution by microplastics (MPs) has emerged as a significant environmental and public health concern. Several conventional technologies in drinking water and wastewater treatment facilities are capable of capturing a substantial portion of microplastics from surface water; however, only limited methods are available for actual destruction of microplastics. Rate of success is highly variable, and actual mechanisms which result in MP destruction are only partly known.

View Article and Find Full Text PDF

Copper (Cu) is an essential mineral nutrient for the proper growth and development of plants; it is involved in myriad morphological, physiological, and biochemical processes. Copper acts as a cofactor in various enzymes and performs essential roles in photosynthesis, respiration and the electron transport chain, and is a structural component of defense genes. Excess Cu, however, imparts negative effects on plant growth and productivity.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change models predict reduced precipitation and increased temperatures in the US Midwest, which could lead to water scarcity challenges for agriculture.
  • Farmers may transition from rain-fed to irrigation agriculture to cope with increased drought risks, revealing a need to assess the suitability of surface water for irrigation.
  • Analysis of water quality from the White River found that while it is mostly suitable for irrigation, the quality decreases significantly in the fall, posing risks for farmers, particularly during droughts.
View Article and Find Full Text PDF

Chlorinated volatile organic compounds (CVOCs) are persistent organic pollutants which are harmful to public health and the environment. Many CVOCs occur in substantial quantities in groundwater and soil, even though their use has been more carefully managed and restricted in recent years. This review summarizes recent data on several innovative treatment solutions for CVOC-affected media including bioremediation, phytoremediation, nanoscale zero-valent iron (nZVI)-based reductive dehalogenation, and photooxidation.

View Article and Find Full Text PDF

Excessive use of fungicides in agriculture may result in substantial accumulation of active residues in soil, which affect crop health and yield. We investigated the response of (white radish) to fungicides in soil and potential beneficial interactions of radish plants with fungicide-tolerant plant growth-promoting rhizobacteria (PGPR). The PGPR were isolated from cabbage and mustard rhizospheres.

View Article and Find Full Text PDF

Certain plants have demonstrated the capability to take up and accumulate metals, thus offering the potential to remediate metal-contaminated water and sediment. Several aquatic species have further been identified which can take up metal and metal oxide engineered nanoparticles (ENPs). It is important to evaluate if aquatic plants exhibiting potential for metal phytoremediation can be applied to remediation of metallic ENPs.

View Article and Find Full Text PDF

The uncontrolled and unplanned development of leather processing industries in Bangladesh has contaminated land and water, prompting concerns for public health. Hazaribagh, located in the southwestern part of Dhaka, has been the city's principal leather processing zone since the 1960s. In order to alleviate the environmental contamination and public health risks to citizens of Hazaribagh and downstream, a relocation project was launched to remove the tanning industry.

View Article and Find Full Text PDF

Nanotechnology is an emerging field of science that applies particles between 1 and 100 nm in size for a range of practical uses. Nano-technological discoveries have opened novel applications in biotechnology and agriculture. Many reactions involving nanoparticles (NPs) are more efficient compared to those of their respective bulk materials.

View Article and Find Full Text PDF

In recent years, ornamental plants have come under investigation as phytoremediation agents. In addition to reducing contaminant concentrations in soil, such plants support local economies by serving social (e.g.

View Article and Find Full Text PDF

Wastewater treatment plants (WWTPs) have been identified as "hot spots" of antibiotics release to the environment. Treatment operations at WWTPs may remove a significant proportion of antibiotics from influent wastewater; however, the effects of tertiary treatment processes on antibiotics removal are not well understood. The objective of this review is to summarize the current literature regarding antibiotics removal from common tertiary processes at full-scale municipal WWTPs and to reveal the research gaps and inform future research directions.

View Article and Find Full Text PDF

Cadmium (Cd) may be toxic to aquatic plants even at modest concentrations, and excessive quantities of zinc (Zn) decrease plant performance. The Cd and Zn phytoremediation potential of several aquatic plant species (Thalia geniculate, Cyperus alternifolius, Canna indica, Eichhornia crassipes, Pistia stratiotes) and one grass species (Vetiveria zizanioides) was evaluated in hydroponic experiments. Vetiveria zizanioides, E.

View Article and Find Full Text PDF

This study determines uptake and accumulation of radionuclides and heavy metals by Pluchea indica and Avicennia marina and evaluates phytoremediation potential via greenhouse and field experiments. P. indica and A.

View Article and Find Full Text PDF

The ability of a mixture of Typha angustifolia and Eichhornia crassipes to remove organics, nutrients, and heavy metals from wastewater from a Thailand fresh market was studied. Changes in physicochemical properties of the wastewater including pH, temperature, chemical oxygen demand, dissolved oxygen, biochemical oxygen demand (BOD), total P, TOC, conductivity, total Kjeldahl nitrogen, NO-N, NH-N, and metal (Pb, Cd, and Zn) concentrations were monitored. In the aquatic plant (AP) treatment, 100% survival of both species was observed.

View Article and Find Full Text PDF

Cadmium is a toxic metallic element that poses serious human health risks via consumption of contaminated agricultural products. The effect of mixtures of dicalcium phosphate and organic amendments, namely cow manure (MD) and leonardite (LD), on Cd and Zn uptake of three rice cultivars (KDML105, KD53, and PSL2) was examined in mesocosm experiments. Plant growth, Cd and Zn accumulation, and physicochemical properties of the test soils were investigated before and after plant harvest.

View Article and Find Full Text PDF

Mangrove ecosystems in Pattani Bay, Thailand are considered representatives for monitoring the occurrence of anthropogenic and natural pollution due to metal and radionuclide contamination. Sediments and seawater were collected from five locations to determine metal (Cd, Cr, Cu, Mn, Ni, Zn, and Pb) and radionuclide (Ra, Th, and K) concentrations. Spatial variations in metal and radionuclide concentrations were determined among the sampling sites.

View Article and Find Full Text PDF

Little is known regarding phytoremediation of radionuclides from soil; even less is known about radionuclide contamination and removal in tropical ecosystems such as mangrove forests. In mangrove forests in Pattani Bay, Thailand, 18 plant species from 17 genera were evaluated for radionuclide concentrations within selected plant parts. Two shrub species, Avicennia marina and Pluchea indica, accumulated the highest Th (24.

View Article and Find Full Text PDF

In cases where fire debris contains soil, microorganisms can rapidly and irreversibly alter the chemical composition of any ignitable liquid residue that may be present. In this study, differences in microbial degradation due to the season in which the sample is collected was examined. Soil samples were collected from the same site during Fall, Winter, Spring and Summer and the degradation of gasoline was monitored over 30 days.

View Article and Find Full Text PDF