Publications by authors named "Pich A"

Unlabelled: Autoimmune polyendocrine syndrome type 1 (APS-1) is caused by mutations of the autoimmune regulator (AIRE) gene. Mouse studies have shown that this results in defective negative selection of T cells and defective early seeding of peripheral organs with regulatory T cells (Tregs). Aire deficiency in humans and mice manifests as spontaneous autoimmunity against multiple organs, and 20% of patients develop an autoimmune hepatitis (AIH).

View Article and Find Full Text PDF

The non-canonical IKK kinase TBK1 serves as an important signal transmitter of the antiviral interferon response, but is also involved in the regulation of further processes such as autophagy. The activity of TBK1 is regulated by posttranslational modifications comprising phosphorylation and ubiquitination. This study identifies SUMOylation as a novel posttranslational TBK1 modification.

View Article and Find Full Text PDF

Based on demographic trends, the societies in many developed countries are facing an increasing number and proportion of people over the age of 65. The raise in elderly populations along with improved health-care will be concomitant with an increased prevalence of ageing-associated chronic conditions like cardiovascular, renal, and respiratory diseases, arthritis, dementia, and diabetes mellitus. This is expected to pose unprecedented challenges both for individuals and societies and their health care systems.

View Article and Find Full Text PDF

Background: The systemic palliative chemotherapy of locally extended gastrointestinal and hepatobiliary tumors is associated with a considerable burden for the patient. The aim of this project was to develop a new drug release system to improve the local stent therapy in these patients as a proof of concept study. For this purpose, polymer filaments were modified with drug-loaded polymer microgels that allow selective release of the active substance by photochemical triggering using laser radiation.

View Article and Find Full Text PDF

Clostridium botulinum C3 exoenzyme (C3) selectively inactivates RhoA/B/C GTPases by ADP-ribosylation. Based on this substrate specificity C3 is a well-established tool in cell biology. C3 is taken up by eukaryotic cells although lacking an uptake and translocation domain.

View Article and Find Full Text PDF

Herein, we investigate the interfacial behavior of temperature-sensitive aqueous microgels on the toluene/water interface. Copolymer microgels based on N-vinylcaprolactam (VCL) and two acrylamides, N-isopropylacrylamide (NIPAm) and N-isopropylmethacrylamide (NIPMAm), with various copolymer compositions were used in this study. It is revealed that these copolymer microgels have the similar internal structure, regardless of the chemical composition.

View Article and Find Full Text PDF

Objectives: Tumor angiogenesis is an essential and complex process necessary for the growth of all tumors which represents a potential therapeutic target. Angiogenesis inhibitors targeting vascular endothelial growth factor (VEGF) or their receptor tyrosine kinases have been approved by the FDA. In thymic epithelial tumors (TET), targeted therapies have been sporadically applied due to their rarity.

View Article and Find Full Text PDF

Imaging MS (MSI) has emerged as a valuable tool to study the spatial distribution of biomolecules in the brain. Herein, MALDI-MSI was used to determine the distribution of endogenous peptides in a rat model of Usher's disease. This rare disease is considered as a leading cause of deaf-blindness in humans worldwide.

View Article and Find Full Text PDF

In the present work, we investigate the potential of aqueous polymer microgels in membrane technology, especially for filtration applications. The poly(N-vinylcaprolactam)-based microgels exhibit thermoresponsive behavior and were employed to coat hollow-fiber membranes used for micro- and ultrafiltration. We discuss the preparation of microgel-modified membranes (by "inside-out" as well as "outside-in" filtration in dead-end mode).

View Article and Find Full Text PDF

Rationale: The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut).

View Article and Find Full Text PDF

The envisioned clinical and industrial use of human pluripotent stem cells and their derivatives has given major momentum to the establishment of suspension culture protocols that enable the mass production of cells. Understanding molecular changes accompanying the transfer from adherent to suspension culture is of utmost importance because this information can have a direct effect on the development of optimized culture conditions. In this study we assessed the gene expression of human embryonic stem cells and induced pluripotent stem cells grown in surface-adherent culture (two-dimensional) versus free-floating suspension culture spheroids (three-dimensional).

View Article and Find Full Text PDF

We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction.

View Article and Find Full Text PDF

Despite advances in allogeneic stem cell transplantation, BCR-ABL-positive acute lymphoblastic leukaemia (ALL) remains a high-risk disease, necessitating the development of novel treatment strategies. As the known oncomir, miR-17~92, is regulated by BCR-ABL fusion in chronic myeloid leukaemia, we investigated its role in BCR-ABL translocated ALL. miR-17~92-encoded miRNAs were significantly less abundant in BCR-ABL-positive as compared to -negative ALL-cells and overexpression of miR-17~19b triggered apoptosis in a BCR-ABL-dependent manner.

View Article and Find Full Text PDF

Hypothesis: Laponite nanoclay embedded inside soluble crosslinked copolymers (microgels) may act as cation exchanger allowing loading of the microgels with cationic metal precursors, which upon reduction yield tailored ternary colloidal nanocomposites comprising both nanoclay and metal nanoparticles.

Experiments: Microgel nanohybrids with variable Laponite nanoclay content were loaded with cationic precursors of different noble metals (Pd, Pt, Au); subsequent reduction by several methods yielded ternary nanocomposites which were extensively characterized. Nanocomposites based on Pd were also tested as catalysts in standard Suzuki and Sonogashira cross-coupling reactions.

View Article and Find Full Text PDF

In recent years, MALDI imaging mass spectrometry (MALDI-IMS) has developed as a promising tool to investigate the spatial distribution of biomolecules in intact tissue specimens. Ion densities of various molecules can be displayed as heat maps while preserving anatomical structures. In this short review, an overview of different biomolecules that can be analyzed by MALDI-IMS is given.

View Article and Find Full Text PDF

We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters.

View Article and Find Full Text PDF

Core binding factor (CBF) acute myeloid leukaemia (AML) represents 5-8% of all AMLs and has a relatively favourable prognosis. However, activating c-KIT mutations are reported to be associated with higher risk of relapse and shorter survival. To verify the incidence and prognostic value of c-KIT mutations in CBF AML, we retrospectively analysed bone marrow samples of 23 consecutive adult patients with de novo CBF AML [14 inv(16) and 9 t(8;21)] treated at a single institution from 2000 to 2011.

View Article and Find Full Text PDF

Clostridium difficile is the major cause of intestinal infections in hospitals. The major virulence factors are toxin A (TcdA) and toxin B (TcdB), which belong to the group of clostridial glucosylating toxins (CGT) that inactivate small GTPases. After a 24 h incubation period with TcdA or a glucosyltransferase-deficient mutant TcdA (gdTcdA), quantitative changes in the proteome of colonic cells (Caco-2) were analyzed using high-resolution LC-MS/MS and the SILAC technique.

View Article and Find Full Text PDF

Knowledge on the proteome level about the adaptation of pathogenic mycobacteria to the environment in their natural hosts is limited. Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a chronic and incurable granulomatous enteritis of ruminants, and has been suggested to be a putative aetiological agent of Crohn's disease in humans.

View Article and Find Full Text PDF

The Rho GTPases Rac1 and Cdc42 regulate a variety of cellular functions by signaling to different signal pathways. It is believed that the presence of a specific effector at the location of GTPase activation determines the route of downstream signaling. We previously reported about EGF-induced Ser-71 phosphorylation of Rac1/Cdc42.

View Article and Find Full Text PDF

Responses of the halophyte Cakile maritima to moderate salinity were addressed at germination and vegetative stages by bringing together proteomics and eco-physiological approaches. 75 mM NaCl-salinity delayed significantly the germination process and decreased slightly the seed germination percentage compared to salt-free conditions. Monitoring the proteome profile between 0 h and 120 h after seed sowing revealed a delay in the degradation of seed storage proteins when germination took place under salinity, which may explain the slower germination rate observed.

View Article and Find Full Text PDF

The bacterial adenylyl cyclase toxins CyaA from Bordetella pertussis and edema factor from Bacillus anthracis as well as soluble guanylyl cyclase α(1)β(1) synthesize the cyclic pyrimidine nucleotide cCMP. These data raise the question to which effector proteins cCMP binds. Recently, we reported that cCMP activates the regulatory subunits RIα and RIIα of cAMP-dependent protein kinase.

View Article and Find Full Text PDF

Background: The applications of proteomic strategies to ovine medicine remain limited. The definition of serum proteome may be a good tool to identify useful protein biomarkers for recognising sub-clinical conditions and overt disease in sheep. Findings from bovine species are often directly translated for use in ovine medicine.

View Article and Find Full Text PDF