J Gravit Physiol
December 2001
In order to explore the potential impact of microgravity on flavonoid biosynthesis, we examined isoflavonoid levels in soybean (Glycine max) tissues generated under both spaceflight and clinorotation conditions. A 6-day Space Shuttle-based microgravity exposure resulted in enhanced accumulation of isoflavone glycosides (daidzin, 6"-O-malonyl-7-O-glucosyl daidzein, genistin, 6"-O-malonyl-7-O-glucosyl genistein) in hypocotyl and root tissues, but reduced levels in cotyledons (relative to 1g controls on Earth). Soybean seedlings grown on a horizontally rotating clinostat for 3, 4 and 5 days exhibited (relative to a vertical clinorotation control) an isoflavonoid accumulation pattern similar to the space-grown tissues.
View Article and Find Full Text PDFThe effect of spaceflight on starch development in soybean (Glycine max L., BRIC-03) and potato (Solanum tuberosum, Astroculture-05) was compared with ground controls by biophysical and biochemical measurements. Starch grains from plants from both flights were on average 20-50% smaller in diameter than ground controls.
View Article and Find Full Text PDFAs part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented.
View Article and Find Full Text PDFPlants are an important component of the controlled ecological life-support system (CELSS) for future long-term spaceflight and the International Space Station. Therefore, it is critical to understand the susceptibility of plants to pathogen infection in microgravity. An increase in both hyphal growth and sporangia formation in Phycomyces blakes in microgravity has been described.
View Article and Find Full Text PDFMicrogravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.
View Article and Find Full Text PDFLife Support Biosph Sci
March 2000
A method was developed for the reliable germination in space of wheat seeds on porous tube nutrient delivery systems. Germination paper strips were loosely rolled into cylinders and two seeds inserted close to the outer edges of each cylinder. This configuration: 1) directed the emerging shoots upward and roots downward, 2) was efficient in wicking moisture from the porous tubes, and 3) provided open areas for oxygen diffusion.
View Article and Find Full Text PDFIn the microgravity environment of the Space Shuttle Columbia (Life and Microgravity Mission STS-78), were grown 1-year-old Douglas fir and loblolly pine plants in a NASA plant growth facility. Several plants were harnessed (at 45 degrees ) to establish if compression wood biosynthesis, involving altered cellulose and lignin deposition and cell wall structure would occur under those conditions of induced mechanical stress. Selected plants were harnessed at day 2 in orbit, with stem sections of specific plants harvested and fixed for subsequent microscopic analyses on days 8, 10 and 15.
View Article and Find Full Text PDFSoluble protein expression in Arabidopsis thaliana L. (Heynh.) leaf and stem tissue was examined after chronic clinorotation.
View Article and Find Full Text PDFThe Porous Tube Plant Nutrient Delivery System or PTPNDS (U.S. Patent #4,926,585) has been under development for the past six years with the goal of providing a means for culturing plants in microgravity, specifically providing water and nutrients to the roots.
View Article and Find Full Text PDFWe have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.
View Article and Find Full Text PDFThe integrated DNA in stable transformants formed by direct gene transfer often shows complex restriction patterns. One cause of these complex restriction patterns could be the ligation of plasmid fragments prior to their integration. This paper provides evidence for the ligation of plasmid fragments by plant cells.
View Article and Find Full Text PDFA species-specific, dispersed repetitive DNA sequence was cloned from Nicotiana plumbaginifolia and used in dot blots and in situ hybridizations to analyze asymmetric somatic hybrids of N. tabacum(+)kanamycin-resistant N. plumbaginifolia.
View Article and Find Full Text PDFElectroporation utilizes high-voltage electric fields for cell permeabilization, This technique has been used for promoting the cellular uptake of exogenous molecules and macromolecules, including nucleotides, dyes, RNA, DNA, and even small proteins (1-7). Electroporation's useful attributes are its simplicity and its general effectiveness with a wide range of cell types. Because of its general efficacy, electroporation is becoming a valuable technique for the introduction of DNA into cell types that are resistant to transformation by other procedures (6-8).
View Article and Find Full Text PDFTheor Appl Genet
October 1987
Mesophyll protoplasts of a kanamycin-resistant, nopaline-positive Nicotiana plumbaginifolia seed line were inactivated by γ-irradiation and electrically fused with unirradiated mesophyll protoplasts of N. tabacum. Hybrids were selected on kanamycin and regenerated.
View Article and Find Full Text PDF