Publications by authors named "Piasetzky E"

We extend the QCD Parton Model analysis using a factorized nuclear structure model incorporating individual nucleons and pairs of correlated nucleons. Our analysis of high-energy data from lepton deep-inelastic scattering, Drell-Yan, and W and Z boson production simultaneously extracts the universal effective distribution of quarks and gluons inside correlated nucleon pairs, and their nucleus-specific fractions. Such successful extraction of these universal distributions marks a significant advance in our understanding of nuclear structure properties connecting nucleon- and parton-level quantities.

View Article and Find Full Text PDF

We report the first double-differential neutrino-argon cross section measurement made simultaneously for final states with and without protons for the inclusive muon neutrino charged-current interaction channel. The proton kinematics of this channel are further explored with a differential cross section measurement as a function of the leading proton's kinetic energy that extends across the detection threshold. These measurements use data collected with the MicroBooNE detector from 6.

View Article and Find Full Text PDF

We present a first search for dark-trident scattering in a neutrino beam using a dataset corresponding to 7.2×10^{20} protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the main injector produce π^{0} and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A^{'}.

View Article and Find Full Text PDF

We present a measurement of η production from neutrino interactions on argon with the MicroBooNE detector. The modeling of resonant neutrino interactions on argon is a critical aspect of the neutrino oscillation physics program being carried out by the DUNE and Short Baseline Neutrino programs. η production in neutrino interactions provides a powerful new probe of resonant interactions, complementary to pion channels, and is particularly suited to the study of higher-order resonances beyond the Δ(1232).

View Article and Find Full Text PDF

We present the first search for heavy neutral leptons (HNLs) decaying into νe^{+}e^{-} or νπ^{0} final states in a liquid-argon time projection chamber using data collected with the MicroBooNE detector. The data were recorded synchronously with the NuMI neutrino beam from Fermilab's main injector corresponding to a total exposure of 7.01×10^{20} protons on target.

View Article and Find Full Text PDF

We report the first measurement of flux-integrated double-differential quasielasticlike neutrino-argon cross sections, which have been made using the Booster Neutrino Beam and the MicroBooNE detector at Fermi National Accelerator Laboratory. The data are presented as a function of kinematic imbalance variables which are sensitive to nuclear ground-state distributions and hadronic reinteraction processes. We find that the measured cross sections in different phase-space regions are sensitive to different nuclear effects.

View Article and Find Full Text PDF

We present the first measurement of the cross section of Cabibbo-suppressed Λ baryon production, using data collected with the MicroBooNE detector when exposed to the neutrinos from the main injector beam at the Fermi National Accelerator Laboratory. The data analyzed correspond to 2.2×10^{20} protons on target running in neutrino mode, and 4.

View Article and Find Full Text PDF

We present a search for eV-scale sterile neutrino oscillations in the MicroBooNE liquid argon detector, simultaneously considering all possible appearance and disappearance effects within the 3+1 active-to-sterile neutrino oscillation framework. We analyze the neutrino candidate events for the recent measurements of charged-current ν_{e} and ν_{μ} interactions in the MicroBooNE detector, using data corresponding to an exposure of 6.37×10^{20} protons on target from the Fermilab booster neutrino beam.

View Article and Find Full Text PDF

We present a measurement of ν_{e} interactions from the Fermilab Booster Neutrino Beam using the MicroBooNE liquid argon time projection chamber to address the nature of the excess of low energy interactions observed by the MiniBooNE Collaboration. Three independent ν_{e} searches are performed across multiple single electron final states, including an exclusive search for two-body scattering events with a single proton, a semi-inclusive search for pionless events, and a fully inclusive search for events containing all hadronic final states. With differing signal topologies, statistics, backgrounds, reconstruction algorithms, and analysis approaches, the results are found to be either consistent with or modestly lower than the nominal ν_{e} rate expectations from the Booster Neutrino Beam and no excess of ν_{e} events is observed.

View Article and Find Full Text PDF

We report a measurement of the energy-dependent total charged-current cross section σ(E_{ν}) for inclusive muon neutrinos scattering on argon, as well as measurements of flux-averaged differential cross sections as a function of muon energy and hadronic energy transfer (ν). Data corresponding to 5.3×10^{19} protons on target of exposure were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab booster neutrino beam with a mean neutrino energy of approximately 0.

View Article and Find Full Text PDF

The ratio of the nucleon F_{2} structure functions, F_{2}^{n}/F_{2}^{p}, is determined by the MARATHON experiment from measurements of deep inelastic scattering of electrons from ^{3}H and ^{3}He nuclei. The experiment was performed in the Hall A Facility of Jefferson Lab using two high-resolution spectrometers for electron detection, and a cryogenic target system which included a low-activity tritium cell. The data analysis used a novel technique exploiting the mirror symmetry of the two nuclei, which essentially eliminates many theoretical uncertainties in the extraction of the ratio.

View Article and Find Full Text PDF

We report results from a search for neutrino-induced neutral current (NC) resonant Δ(1232) baryon production followed by Δ radiative decay, with a ⟨0.8⟩  GeV neutrino beam. Data corresponding to MicroBooNE's first three years of operations (6.

View Article and Find Full Text PDF

Neutrinos exist in one of three types or 'flavours'-electron, muon and tau neutrinos-and oscillate from one flavour to another when propagating through space. This phenomena is one of the few that cannot be described using the standard model of particle physics (reviewed in ref. ), and so its experimental study can provide new insight into the nature of our Universe (reviewed in ref.

View Article and Find Full Text PDF

We present a search for the decays of a neutral scalar boson produced by kaons decaying at rest, in the context of the Higgs portal model, using the MicroBooNE detector. We analyze data triggered in time with the Fermilab NuMI neutrino beam spill, with an exposure of 1.93×10^{20} protons on target.

View Article and Find Full Text PDF

We report on the first measurement of flux-integrated single differential cross sections for charged-current (CC) muon neutrino (ν_{μ}) scattering on argon with a muon and a proton in the final state, ^{40}Ar (ν_{μ},μp)X. The measurement was carried out using the Booster Neutrino Beam at Fermi National Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an exposure of 4.59×10^{19} protons on target.

View Article and Find Full Text PDF

Arad is a well preserved desert fort on the southern frontier of the biblical kingdom of Judah. Excavation of the site yielded over 100 Hebrew ostraca (ink inscriptions on potsherds) dated to ca. 600 BCE, the eve of Nebuchadnezzar's destruction of Jerusalem.

View Article and Find Full Text PDF

We report the first measurement of the (e,e^{'}p) three-body breakup reaction cross sections in helium-3 (^{3}He) and tritium (^{3}H) at large momentum transfer [⟨Q^{2}⟩≈1.9  (GeV/c)^{2}] and x_{B}>1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40≤p_{miss}≤500  MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon.

View Article and Find Full Text PDF

Mechanisms of spin-flavor SU(6) symmetry breaking in quantum chromodynamics (QCD) are studied via an extraction of the free neutron structure function from a global analysis of deep inelastic scattering (DIS) data on the proton and on nuclei from A=2 (deuterium) to 208 (lead). Modification of the structure function of nucleons bound in atomic nuclei (known as the EMC effect) are consistently accounted for within the framework of a universal modification of nucleons in short-range correlated (SRC) pairs. Our extracted neutron-to-proton structure function ratio F_{2}^{n}/F_{2}^{p} becomes constant for x_{B}≥0.

View Article and Find Full Text PDF

The strong nuclear interaction between nucleons (protons and neutrons) is the effective force that holds the atomic nucleus together. This force stems from fundamental interactions between quarks and gluons (the constituents of nucleons) that are described by the equations of quantum chromodynamics. However, as these equations cannot be solved directly, nuclear interactions are described using simplified models, which are well constrained at typical inter-nucleon distances but not at shorter distances.

View Article and Find Full Text PDF

Past excavations in Samaria, capital of biblical Israel, yielded a corpus of Hebrew ink on clay inscriptions (ostraca) that documents wine and oil shipments to the palace from surrounding localities. Many questions regarding these early 8th century BCE texts, in particular the location of their composition, have been debated. Authorship in countryside villages or estates would attest to widespread literacy in a relatively early phase of ancient Israel's history.

View Article and Find Full Text PDF

We report the first measurement of the double-differential and total muon neutrino charged current inclusive cross sections on argon at a mean neutrino energy of 0.8 GeV. Data were collected using the MicroBooNE liquid argon time projection chamber located in the Fermilab Booster neutrino beam and correspond to 1.

View Article and Find Full Text PDF

We measured the triple coincidence A(e,e^{'}np) and A(e,e^{'}pp) reactions on carbon, aluminum, iron, and lead targets at Q^{2}>1.5  (GeV/c)^{2}, x_{B}>1.1 and missing momentum >400  MeV/c.

View Article and Find Full Text PDF

Short-range correlated (SRC) nucleon pairs are a vital part of the nucleus, accounting for almost all nucleons with momentum greater than the Fermi momentum (k_{F}). A fundamental characteristic of SRC pairs is having large relative momenta as compared to k_{F}, and smaller center of mass (c.m.

View Article and Find Full Text PDF

The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms.

View Article and Find Full Text PDF

Most surviving biblical period Hebrew inscriptions are ostraca-ink-on-clay texts. They are poorly preserved and once unearthed, fade rapidly. Therefore, proper and timely documentation of ostraca is essential.

View Article and Find Full Text PDF