Publications by authors named "Pianpian Chen"

Osteoporosis is characterized by increased osteoclast activity, which is strongly associated with increased levels of reactive oxygen species (ROS). Fraxin, a natural coumarin glycoside, has shown anti-inflammatory and antioxidant properties, but its effects on bone homeostasis are obscure. The effects of fraxin on osteoclast formation and activation were measured via an in vitro osteoclastogenesis assay.

View Article and Find Full Text PDF

Objective: To observe the effects of electroacupuncture (EA) pretreatment on cardiac function, sympathetic nerve activity, indexes of myocardial injury and GABA receptor in fastigial nucleus in rats with myocardial ischemia reperfusion injury (MIRI), and to explore the neuroregulatory mechanism of EA pretreatment in improving MIRI.

Methods: A total of 60 male SD rats were randomly divided into a sham operation group, a model group, an EA group, an agonist group and an agonist+EA group, 12 rats in each group. The MIRI model was established by ligation of the left anterior descending coronary artery.

View Article and Find Full Text PDF

Myocardial ischemia-reperfusion injury (MIRI) has high morbidity and mortality worldwide. Increasing evidence has shown that electroacupuncture (EA) plays a critical role in alleviating MIRI. The aim of this study is to investigate whether glutamatergic neurons in the lateral hypothalamus (LH) have vital effect on MIRI as well as the underlying mechanism during the EA pretreatment.

View Article and Find Full Text PDF

To achieve a better treatment regimen and follow-up assessment design for intensity-modulated radiotherapy (IMRT)-treated nasopharyngeal carcinoma (NPC) patients, an accurate progression-free survival (PFS) time prediction algorithm is needed. We propose developing a PFS prediction model of NPC patients after IMRT treatment using a deep learning method and comparing that with the traditional texture analysis method. One hundred and fifty-one NPC patients were included in this retrospective study.

View Article and Find Full Text PDF

Background: Myocardial ischemia reperfusion injury (MIRI) is an important mechanism of post-myocardial infarction injury and a main cause of death in patients with ischemic heart disease. Electroacupuncture (EA) pretreatment is effective for the prevention and treatment of MIRI, but mechanisms mediating the effects of cardiovascular disease EA treatments remain unclear.

Objectives: To determine whether the lateral hypothalamus (LHA) and the cerebellar fastigial nucleus (FN) are involved in the protective effects of EA stimulation on MIRI.

View Article and Find Full Text PDF

Objective: To explore whether the paraventricular nucleus (PVN) participates in regulation of the anti-myocardial ischemia-reperfusion injury (MIRI) effect of electroacupuncture (EA) and whether this is achieved through the PVN-interposed nucleus (IN) neural pathway.

Methods: The modeling method of myocardial ischemia reperfusion injury was achieved by ligating the left anterior descending coronary artery in Sprague-Dawley rats. We used the Powerlab multi-channel physiological recorder system to record electro-cardiograms and analyze the changes in ST segment displacement; 2,3,5-Triphenyltetrazolium chloride staining was used to observe the percentage of myocardial infarction areas.

View Article and Find Full Text PDF

Purpose: To investigate whether the microvascular permeability of lumbar marrow and bone trabecular changes in early-stage diabetic rabbits can be quantitatively evaluated using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), quantitative computed tomography, and texture-analyzed permeability parameter map of DCE-MRI.

Materials And Methods: This prospective study included 24 rabbits that were randomly assigned to diabetic (n = 14) and control (n = 10) groups. All rabbits underwent sagittal MRI of the lumbar region at 0, 4, 8, 12, and 16 weeks after alloxan injection.

View Article and Find Full Text PDF

Objectives: To estimate the microvascular permeability and perfusion of skeletal muscle by using quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and explore the feasibility of using texture analysis (TA) to evaluate subtle structural changes of diabetic muscles.

Methods: Twenty-four rabbits were randomly divided into diabetic (n = 14) and control (n = 10) groups, and underwent axial DCE-MRI of the multifidus muscle (0, 4, 8, 12, and 16 weeks after alloxan injection). The pharmacokinetic model was used to calculate the permeability parameters; texture parameters were extracted from volume transfer constant (K) map.

View Article and Find Full Text PDF

Toad bone not only contains the rich cartilage-like matrix but also presents low immunogenicity. It is inferred that decellularized toad bone matrix (dBECM) may provide the more profitable osteoinductive microenvironment for mesenchymal stem cells (MSCs) to promote the repair of bone defects. Herein, a hollow bone-inspired tube is first made from hydroxyapatite (HA) and poly (γ-glutamic acid) (PGA), and then MSCs/dBECM hydrogel is uniformly filled to its central cavity, constructing a biomimetic bone (dBECM + MSCs - PGA + HA).

View Article and Find Full Text PDF

Excessive deposition of extracellular matrix (ECM) usually resulted in scar formation during wound healing, which caused skin dysfunction, such as hair loss. Basic fibroblast growth factor (bFGF) was very helpful for promoting hair follicle neogenesis and regulating the remodeling of ECM during wound healing. Because of its poor stability in wound fluids and low permeability against the dense wound scar, the repairing quality of bFGF on wound was hindered largely in clinical practice.

View Article and Find Full Text PDF

Nephropathy is one of the most severe complications of diabetic patients. The therapeutic strategies for diabetic patients should not only focus on the control of blood glucose but also pay attention to the occurrence of diabetic nephropathy (DN). Coenzyme Q10 (CoQ10) has great therapeutic potential for DN.

View Article and Find Full Text PDF

Introduction: The short lifetime of protein-based therapies has largely limited their therapeutic efficacy in injured nervous post-spinal cord injury (post-SCI).

Methods: In this study, an affinity-based hydrogel delivery system provided sustained-release of proteins, thereby extending the efficacy of such therapies. The affinity-based hydrogel was constructed using a novel polymer, heparin-poloxamer (HP), as a temperature-sensitive bulk matrix and decellular spinal cord extracellular matrix (dscECM) as an affinity depot of drug.

View Article and Find Full Text PDF

Silk was easily dyed in traditional textile industry because of its strong affinity to many colorants. Herein, the biocompatible silk fibroin was firstly extracted from Bombyx mori silkworm cocoons. And SF nanoparticles (SFNPs) were prepared for dyeing indocyanine green (ICG) and construct a therapeutic nano-platform (ICG-SFNPs) for photo-thermal therapy of glioblastoma.

View Article and Find Full Text PDF

A poor percutaneous penetration capability for most topical anti-inflammatory drugs is one of the main causes compromising their therapeutic effects on psoriatic skin. Even though curcumin has shown a remarkable efficacy in the treatment of psoriasis, its effective penetration through the stratum corneum is still a major challenge during transdermal delivery. The aim of our study was to design skin-permeating nanoparticles (NPs) to facilitate delivery of curcumin to the deeper layers of the skin.

View Article and Find Full Text PDF

Gastric cancer is a leading cause of cancer‑associated mortality worldwide. In studies on the mechanisms of antigastric cancer drugs, autophagy and endoplasmic reticulum (ER) stress have been demonstrated to serve an active role in gastric cancer. The organic extract of Periplaneta americana (also termed American Cockroach), which is named Kangfuxin (KFX) in China, has been used clinically as a traditional Chinese medicine against disorders, including stomach bleeding, gastric ulcers, tuberculosis, burns and trauma.

View Article and Find Full Text PDF

How to maintain the stability of basic fibroblast growth factor (bFGF) in wounds with massive wound fluids is important to accelerate wound healing. Here, a novel liposome with hydrogel core of silk fibroin (SF-LIP) is successfully developed by the common liposomal template, followed by gelation of liquid SF inside vesicle under sonication. SF-LIP is capable of encapsulating bFGF (SF-bFGF-LIP) with high efficiency, having a diameter of 99.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is one of the most common and lethal microvascular complications of diabetes. This study aimed to explore whether coenzymeQ10 (CoQ10) as an antioxidant combined with ultrasound-targeted microbubble destruction (UTMD) could reverse the progress of early diabetic nephropathy (DN). CoQ10 has great potential to treat early DN.

View Article and Find Full Text PDF

Extracellular matrix-based biomaterials have many advantages over synthetic polymer materials for regenerative medicine applications. In central nervous system (CNS), basic fibroblast growth factor (bFGF) is widely studied as a potential agent for Parkinson's disease (PD). However, the poor stability of bFGF hampered its clinical use.

View Article and Find Full Text PDF

Oxidative stress and ER stress play a role in the pathogenesis of gastric ulcer. Kangfuxin (KFX) has been used to treat gastric ulcer in patients. However, the underlying mechanisms of KFX action remain unclear.

View Article and Find Full Text PDF

Because of the short half-life, either systemic or local administration of bFGF shows significant drawbacks to spinal injury. In this study, an acellular spinal cord scaffold (ASC) was encapsulated in a thermo-sensitive hydrogel to overcome these limitations. The ASC was firstly prepared from the spinal cord of healthy rats and characterized by scanning electronic microscopy and immunohistochemical staining.

View Article and Find Full Text PDF

Intratumoral drug delivery (IT) is an inherently appealing approach for concentrating toxic chemotherapies at the site of action. However, for most chemotherapies, poor tumor penetration and short retention at the administration site limit their anti-tumor effects. In this work, we describe permeable nanoparticles (NPs) prepared with a novel amphiphilic polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine conjugate (VES-g-ε-PLL).

View Article and Find Full Text PDF

Multifunctional nanoparticles capable of the specific delivery of therapeutics to diseased cells and the real-time imaging of these sites have the potential to improve cancer treatment through personalized therapy. In this study, we have proposed a multifunctional nanoparticle that integrate magnetic targeting, drug-carrier functionality and real-time MRI imaging capabilities in one platform for the theranostic treatment of tumors. The multifunctional nanoparticle was designed with a superparamagnetic iron oxide core and a multifunctional shell composed of PEG/PEI/polysorbate 80 (Ps 80) and was used to encapsulate DOX.

View Article and Find Full Text PDF

T-cell-originated protein kinase (TOPK) is highly expressed in several cancer cells and promotes tumorigenesis and progression, and therefore, it is an important target for drug treatment of tumor. Pantoprazole (PPZ) was identified to be a TOPK inhibitor from FDA-approved drug database by structure based virtual ligand screening. Herein, the data indicated that pantoprazole inhibited TOPK activities by directly binding with TOPK in vitro and in vivo.

View Article and Find Full Text PDF

This study aims to investigate the preclinical performance and mechanism of a novel strategy of aFGF-loaded heparin-modified microbubbles (aFGF-HMB) combined with ultrasound-targeted microbubble destruction (UTMD) technique for diabetic cardiomyopathy (DCM) prevention. Type 1 diabetic rats were induced by streptozotocin. Twelve weeks after intervention, indexes from transthoracic echocardiography and cardiac catheterization showed that the left ventricular function in the aFGF-HMB/UTMD group was significantly improved compared with diabetes control (DM).

View Article and Find Full Text PDF