Publications by authors named "Piani M"

The sense of agency (SoA) is central to human experience. The comparator model, contrasting sensory prediction and action feedback, is influential but limited in explaining SoA. We investigated mechanisms beyond the comparator model, focusing on the processing of unpredictable stimuli, perimotor components of SoA, and their relation to schizotypy.

View Article and Find Full Text PDF

The neural underpinnings of selfhood encompass pre-reflective and reflective self-experience. The former refers to a basic, immediate experience of being a self, while the latter involves cognition and introspection. Although neural correlates of reflective self-experience have been studied, the pre-reflective remains underinvestigated.

View Article and Find Full Text PDF
Article Synopsis
  • Mental imagery is important for how we think and feel, and it can affect people with anxiety disorders.* -
  • Researchers used brain scans (fMRI) to see how anxiety patients think and imagine compared to healthy people.* -
  • They found that a specific part of the brain, called the left superior frontal gyrus, works differently in people with anxiety, affecting how they process their thoughts.*
View Article and Find Full Text PDF

Background: Major depressive disorder (MDD) is a severe psychiatric condition characterized by selective cognitive dysfunctions. In this regard, functional Magnetic Resonance Imaging (fMRI) studies showed, both at resting state and during tasks, alterations in the brain functional networks involved in cognitive processes in MDD patients compared to controls. Among those, it seems that the attention network may have a role in the disease pathophysiology.

View Article and Find Full Text PDF

Major Depressive Disorder (MDD) is a disabling illness affecting more than 5% of the elderly population. Higher female prevalence and sex-specific symptomatology have been observed, suggesting that biologically-determined dimensions might affect the disease onset and outcome. Rumination and executive dysfunction characterize adult-onset MDD, but sex differences in these domains and in the related brain mechanisms are still largely unexplored.

View Article and Find Full Text PDF

We show that every entangled state provides an advantage in ancilla-assisted bi- and multichannel discrimination that singles out its degree of entanglement, quantified in terms of the Schmidt number. The Schmidt-number robustness provides a compelling quantification of such an advantage, and, remarkably, the well-known robustness of entanglement exactly provides the largest multiplicative advantage an entangled state can provide compared to the case where no ancilla is used in a channel discrimination task.

View Article and Find Full Text PDF

Quantum Darwinism posits that information becomes objective whenever multiple observers indirectly probe a quantum system by each measuring a fraction of the environment. It was recently shown that objectivity of observables emerges generically from the mathematical structure of quantum mechanics, whenever the system of interest has finite dimensions and the number of environment fragments is large [F. G.

View Article and Find Full Text PDF

Quantum discord expresses a fundamental nonclassicality of correlations that is more general than entanglement, but that, in its standard definition, is not easily evaluated. We derive a hierarchy of computationally efficient lower bounds to the standard quantum discord. Every nontrivial element of the hierarchy constitutes by itself a valid discordlike measure, based on a fundamental feature of quantum correlations: their lack of shareability.

View Article and Find Full Text PDF

"Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res.

View Article and Find Full Text PDF

Quantifying coherence is an essential endeavor for both quantum foundations and quantum technologies. Here, the robustness of coherence is defined and proven to be a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state.

View Article and Find Full Text PDF

Skeletal muscle injuries are common causes of severe long-term pain and physical disability, accounting for up to 55% of all sports injuries. The phases of the healing processes after direct or indirect muscle injury are complex but clearly defined and include well-coordinated steps: degeneration, inflammation, regeneration, and fibrosis. Despite this frequent occurrence and the presence of a body of data on the pathophysiology of muscle injuries, none of the current treatment strategies have shown to be really effective in strictly controlled trials.

View Article and Find Full Text PDF

Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system.

View Article and Find Full Text PDF

Steering is the entanglement-based quantum effect that embodies the "spooky action at a distance" disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a necessary and sufficient characterization of steering, based on a quantum information processing task: the discrimination of branches in a quantum evolution, which we dub subchannel discrimination. We prove that, for any bipartite steerable state, there are instances of the quantum subchannel discrimination problem for which this state allows a correct discrimination with strictly higher probability than in the absence of entanglement, even when measurements are restricted to local measurements aided by one-way communication.

View Article and Find Full Text PDF

In quantum mechanics, observing is not a passive act. Consider a system of two quantum particles A and B: if a measurement apparatus M is used to make an observation on B, the overall state of the system AB will typically be altered. When this happens, no matter which local measurement is performed, the two objects A and B are revealed to possess peculiar correlations known as quantum discord.

View Article and Find Full Text PDF

The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties.

View Article and Find Full Text PDF

Quantum entanglement and quantum nonlocality are known to exhibit monogamy; that is, they obey strong constraints on how they can be distributed among multipartite systems. Quantum correlations that comprise and go beyond entanglement are quantified by, e.g.

View Article and Find Full Text PDF

We devise a protocol in which general nonclassical multipartite correlations produce a physically relevant effect, leading to the creation of bipartite entanglement. In particular, we show that the relative entropy of quantumness, which measures all nonclassical correlations among subsystems of a quantum system, is equivalent to and can be operationally interpreted as the minimum distillable entanglement generated between the system and local ancillae in our protocol. We emphasize the key role of state mixedness in maximizing nonclassicality: Mixed entangled states can be arbitrarily more nonclassical than separable and pure entangled states.

View Article and Find Full Text PDF

Bound entanglement is central to many exciting theoretical results in quantum information processing, but has thus far not been experimentally realized. In this work, we consider a one-parameter family of four-qubit Smolin states. We experimentally produce these states in the polarization of four optical photons produced from parametric down-conversion.

View Article and Find Full Text PDF

We provide a unified framework for nonsignalling quantum and classical multipartite correlations, allowing all to be written as the trace of some local (quantum) measurements multiplied by an operator. The properties of this operator define the corresponding set of correlations. We then show that if the theory is such that all local quantum measurements are possible, one obtains the correlations corresponding to the extension of Gleason's Theorem to multipartite systems.

View Article and Find Full Text PDF

We introduce variants of relative entropy of entanglement based on the optimal distinguishability from unentangled states by means of restricted measurements. In this way we are able to prove that the standard regularized entropy of entanglement is strictly positive for all multipartite entangled states. This implies that the asymptotic creation of a multipartite entangled state by means of local operations and classical communication always requires the consumption of a nonlocal resource at a strictly positive rate.

View Article and Find Full Text PDF

We study the quantumness of bipartite correlations by proposing a quantity that combines a measure of total correlations-mutual information-with the notion of broadcast copies-i.e., generally nonfactorized copies-of bipartite states.

View Article and Find Full Text PDF

We prove that every entangled state is useful as a resource for the problem of minimum-error channel discrimination. More specifically, given a single copy of an arbitrary bipartite entangled state, it holds that there is an instance of a quantum channel discrimination task for which this state allows for a correct discrimination with strictly higher probability than every separable state.

View Article and Find Full Text PDF

We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e.

View Article and Find Full Text PDF

The aim of this study was to inquire the antioxidant status in plasma and lipoproteins isolated from normal subjects possessing different ApoE genotypes. For this purpose we investigated blood samples from 106 healthy blood donors: the distribution of ApoE alleles (E2/E2 = 0.9%, E2/E3 = 10.

View Article and Find Full Text PDF