The European Union's Workers' Directive 2013/35/EU on the minimum health and safety requirements regarding the exposure of workers to electromagnetic fields specifies action levels (ALs) for external electric and magnetic fields, which should protect against induced tissue-internal electric field strengthabove the exposure limit values, the latter being defined in order to prevent tissue stimulation at low frequencies. However, although 2013/35/EU explicitly calls for the protection of 'workers at particular risk' (including workers with metallic implants), the AL specified in the Directive have been derived under the assumption that there are no metallic parts present inside the body. Therefore, in the present work, we analysed the situation of a worker's hand and forearm bearing metallic implants (Herbert screw and volar radius plate) used for osteosynthesis after the most common bone fractures of the hand/forearm, exposed to low frequency magnetic fields.
View Article and Find Full Text PDFIn order to evaluate the localised magnetic field (MF) exposure of the cashier's hand due to a particular demagnetization device (deactivator) for single-use labels of an acoustomagnetic (AM) electronic article surveillance (EAS) system, comprehensive measurements of the MF near the surface of the deactivator, and numerical computations of the induced electric field strength, were performed in high-resolution anatomical hand models of different postures and positions with respect to the deactivator. The measurement results for magnetic inductionwere assessed with respect to the action levels (AL) for limb exposure, and the computational results forwere evaluated with respect to the exposure limit values (ELV) for health effects according to European Union (EU) directive 2013/35/EU. For the ELV-based assessment, a maximum of the 2 × 2 × 2 mmaveraged(max) and the respective 99.
View Article and Find Full Text PDFMultifunctional nanoparticles are discussed as versatile probes for homogeneous immunoassays for in-vitro diagnostics. Top-down fabrication allows to combine and tailor magnetic and plasmonic anisotropic properties. The combination of nanoimprint lithography, thin film deposition, and lift-off processing provides a top-down fabrication platform, which is both flexible and reliable.
View Article and Find Full Text PDFElectric contact currents (CC) can cause muscle contractions, burns, or ventricular fibrillation which may result in life-threatening situations. In vivo studies with CC are rare due to potentially hazardous effects for participants. Cadaver studies are limited to the range of tissue's electrical properties and the utilized probes' size, relative position, and sensitivity.
View Article and Find Full Text PDF