Background: Equine herpesvirus 4 (EHV-4) causes respiratory disease in horses, and the virus is considered endemic in the global equine population. However, outbreaks can occur when several horses are gathered in relation to shows, competitions, breeding units and at hospitals. In the spring year 2022, an EHV-4 outbreak occurred at the Large Animal Teaching Hospital, University of Copenhagen, Denmark.
View Article and Find Full Text PDFIn recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B.
View Article and Find Full Text PDFCurrently, SARS-CoV-2 have been detected in farmed mink in 13 different countries. Due to the high susceptibility and transmissibility among mink, great concerns of mink serving as a reservoir to generate novel variants with unknown virulence and antigenic properties arose. These concerns have consequently resulted in entire mink productions being culled and banned.
View Article and Find Full Text PDFDuring routine surveillance at the National Influenza Center, Denmark, we detected a zoonotic swine influenza A virus in a patient who became severely ill. We describe the clinical picture and the genetic characterization of this variant virus, which is distinct from another variant found previously in Denmark.
View Article and Find Full Text PDFBackground: Along with an expanding global swine production, the commercial housing and management of swine herds, provide an optimal environment for constant circulation of swine influenza virus (swIAV), thereby challenging farmers and veterinarian in determining optimal control measures. The aim of this study was to investigate the role of gilts in the swIAV transmission dynamics, and to evaluate the impact of different control measures such as quarantine and gilt vaccination.
Methods: The study was conducted as a cross-sectional study in ten Danish sow herds, including five swIAV vaccinated and five unvaccinated herds.
Since the influenza pandemic in 2009, there has been an increased focus on swine influenza A virus (swIAV) surveillance. This paper describes the results of the surveillance of swIAV in Danish swine from 2011 to 2018. In total, 3800 submissions were received with a steady increase in swIAV-positive submissions, reaching 56% in 2018.
View Article and Find Full Text PDFBeginning in late 2017, highly pathogenic avian influenza (HPAI) H5N6 viruses caused outbreaks in wild birds and poultry in several European countries. H5N6 viruses were detected in 43 wild birds found dead throughout Denmark. Most of the Danish virus-positive dead birds were found in the period from February to April 2018.
View Article and Find Full Text PDFInfluenza A virus (IAV) in swine, so-called swine influenza A virus (swIAV), causes respiratory illness in pigs around the globe. In Danish pig herds, a H1N2 subtype named H1N2dk is one of the main circulating swIAV. In this cohort study, the infection dynamic of swIAV was evaluated in a Danish pig herd by sampling and PCR testing of pigs from two weeks of age until slaughter at 22 weeks of age.
View Article and Find Full Text PDFPorcine reproductive and respiratory syndrome virus (PRRSV) is prevalent in Danish swine herds. In July 2019, PRRSV-1 was detected in a PRRSV-negative boar station and subsequently spread to more than 38 herds that had received semen from the boar station. Full genome sequencing revealed a sequence of 15.
View Article and Find Full Text PDFThe degree of antigenic drift in swine influenza A viruses (swIAV) has historically been regarded as minimal compared to that of human influenza A virus strains. However, as surveillance activities on swIAV have increased, more isolates have been characterized, revealing a high level of genetic and antigenic differences even within the same swIAV lineage. The objective of this study was to investigate the level of genetic drift in one enzootically infected swine herd over one year.
View Article and Find Full Text PDFInfluenza A virus (IAV) is a highly contagious pathogen in pigs. Swine IAV (swIAV) infection causes respiratory disease and is thereby a challenge for animal health, animal welfare and the production economy. In Europe, the most widespread strategy for controlling swIAV is implementation of sow vaccination programs, to secure delivery of protective maternally derived antibodies (MDAs) to the newborn piglets.
View Article and Find Full Text PDFRecent studies have questioned the effect of maternal derived antibodies (MDAs) to protect piglets against infection with influenza A virus (IAV). The lack of protection against IAV infections provided by MDAs has encouraged alternative vaccination strategies targeting young piglets in an attempt to stimulate an early antibody response. There is a lack of studies documenting the efficacy of piglet vaccination.
View Article and Find Full Text PDFA longitudinal study was performed in three Danish farrow to grower (30 kilos) herds over a 4-month period to investigate the dynamics and clinical impacts of influenza A virus (IAV) infections. In each herd, four batches consisting of four sows each with five ear-tagged piglets were included. Nasal swabs and/or blood were sampled from the sows and/or the piglets prior to farrowing and at weeks 1, 3, and 5 and at the end of the nursery period.
View Article and Find Full Text PDF