Background: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging.
View Article and Find Full Text PDFThe cellular imbalance between high concentrations of ribonucleotides (NTPs) and low concentrations of deoxyribonucleotides (dNTPs), is challenging for DNA polymerases when building DNA from dNTPs. It is currently believed that DNA polymerases discriminate against NTPs through a steric gate model involving a clash between a tyrosine and the 2'-hydroxyl of the ribonucleotide in the polymerase active site in B-family DNA polymerases. With the help of crystal structures of a B-family polymerase with a UTP or CTP in the active site, molecular dynamics simulations, biochemical assays and yeast genetics, we have identified a mechanism by which the finger domain of the polymerase sense NTPs in the polymerase active site.
View Article and Find Full Text PDFTelomere Biology Disorders (TBDs) are characterized by mutations in telomere-related genes leading to short telomeres and premature aging but with no strict correlation between telomere length and disease severity. Epigenetic alterations are also markers of aging and we aimed to evaluate whether DNA methylation (DNAm) could be part of the pathogenesis of TBDs. In blood from 35 TBD cases, genome-wide DNAm were analyzed and the cases were grouped based on relative telomere length (RTL): short (S), with RTL close to normal controls, and extremely short (ES).
View Article and Find Full Text PDFLate-onset Fuchs endothelial corneal dystrophy (FECD) is a disease affecting the corneal endothelium (CE), associated with a cytosine-thymine-guanine repeat expansion at the CTG18.1 locus in the transcription factor 4 (TCF4) gene. It is unknown whether CTG18.
View Article and Find Full Text PDFDNA polymerase ϵ (Pol ϵ), the major leading-strand DNA polymerase in eukaryotes, has a catalytic subunit (Pol2) and three non-catalytic subunits. The N-terminal half of Pol2 (Pol2CORE) exhibits both polymerase and exonuclease activity. It has been suggested that both the non-catalytic C-terminal domain of Pol2 (with the two cysteine motifs CysA and CysB) and Pol2CORE (with the CysX cysteine motif) are likely to coordinate an Fe-S cluster.
View Article and Find Full Text PDFWhole-genome sequencing is a promising approach for human autosomal dominant disease studies. However, the vast number of genetic variants observed by this method constitutes a challenge when trying to identify the causal variants. This is often handled by restricting disease studies to the most damaging variants, e.
View Article and Find Full Text PDFThe holoenzyme of yeast DNA polymerase ϵ (Pol ϵ) consists of four subunits: Pol2, Dpb2, Dpb3, and Dpb4. A protease-sensitive site results in an N-terminal proteolytic fragment of Pol2, called Pol2core, that consists of the catalytic core of Pol ϵ and retains both polymerase and exonuclease activities. Pre-steady-state kinetics showed that the exonuclease rates on single-stranded, double-stranded, and mismatched DNA were comparable between Pol ϵ and Pol2core.
View Article and Find Full Text PDFNat Struct Mol Biol
January 2014
DNA polymerase ɛ (Pol ɛ) is a high-fidelity polymerase that has been shown to participate in leading-strand synthesis during DNA replication in eukaryotic cells. We present here a ternary structure of the catalytic core of Pol ɛ (142 kDa) from Saccharomyces cerevisiae in complex with DNA and an incoming nucleotide. This structure provides information about the selection of the correct nucleotide and the positions of amino acids that might be critical for proofreading activity.
View Article and Find Full Text PDFThere is a considerable heterogeneity in blood cell telomere length (TL) for individuals of similar age and recent studies have revealed that TL changes by time are dependent on TL at baseline. TL is partly inherited, but results from several studies indicate that e.g.
View Article and Find Full Text PDFBackground: Bilirubin, an antioxidant, has been associated with reduced cardiovascular disease risk. A major cause of elevated plasma bilirubin is the common UGT1A1*28 promoter polymorphism in the gene of the bilirubin-conjugating enzyme UDP-glucuronosyltransferase 1A1, which reduces transcription by 70%. Earlier studies reporting a protective effect of bilirubin on stroke have not included analysis of UGT1A1*28.
View Article and Find Full Text PDFBackground: Bilirubin, an effective antioxidant, shows a large variation in levels between individuals and has been positively associated with reduced cardiovascular disease risk. A major reason for the variability is a common promoter polymorphism, UGT1A1*28, which reduces the transcription of the enzyme that conjugates bilirubin, UDP-glucuronosyltransferase 1A1. The aim of the study was to evaluate a possible protective effect of plasma bilirubin and the UGT1A1*28 polymorphism against myocardial infarction in a prospective case-referent setting.
View Article and Find Full Text PDFOur knowledge on immortalization and telomere biology is mainly based on genetically manipulated cells analyzed before and many population doublings post growth crisis. The general view is that growth crisis is telomere length (TL) dependent and that escape from crisis is coupled to increased expression of the telomerase reverse transcriptase (hTERT) gene, telomerase activity upregulation and TL stabilization. Here we have analyzed the process of spontaneous immortalization of human T cells, regarding pathways involved in senescence and telomerase regulation.
View Article and Find Full Text PDFThe human telomerase reverse transcriptase (hTERT) gene is upregulated in a majority of malignant tumours. A variable tandem repeat, MNS16A, has been reported to be of functional significance for hTERT expression. Published data on the clinical relevance of MNS16A variants in brain tumours have been contradictory.
View Article and Find Full Text PDFRegulation of the telomerase catalytic subunit, hTERT, is a complex process accomplished on many levels. Transcription of the hTERT gene has been widely studied but less is known about the implication of genetic variations. Recently, a functional T to C transition polymorphism was indicated 1327 bp upstream the hTERT transcription starting site.
View Article and Find Full Text PDFTo survey the quality of SNP genotyping, a joint Nordic quality assessment (QA) round was organized between 11 laboratories in the Nordic and Baltic countries. The QA round involved blinded genotyping of 47 DNA samples for 18 or six randomly selected SNPs. The methods used by the participating laboratories included all major platforms for small- to medium-size SNP genotyping.
View Article and Find Full Text PDF