Publications by authors named "Pia Kuss"

The importance of human cell-based in vitro tools to drug development that are robust, accurate, and predictive cannot be understated. There has been significant effort in recent years to develop such platforms, with increased interest in 3D models that can recapitulate key aspects of biology that 2D models might not be able to deliver. We describe the development of a 3D human cell-based in vitro assay for the investigation of nephrotoxicity, using RPTEC-TERT1 cells.

View Article and Find Full Text PDF

Microgravity exposure is associated with loss of muscle mass and strength. The E3 ubiquitin ligase MuRF1 plays an integral role in degrading the contractile apparatus of skeletal muscle; MuRF1 null (KO) mice have shown protection in ground-based models of muscle atrophy. In contrast, MuRF1 KO mice subjected to 21 days of microgravity on the International Space Station (ISS) were not protected from muscle atrophy.

View Article and Find Full Text PDF

Understanding the mechanisms by which cells sense and respond to injury is central to developing therapies to enhance tissue regeneration. Previously, we showed that pancreatic injury consisting of acinar cell damage+β-cell ablation led to islet cell transdifferentiation. Here, we report that the molecular mechanism for this requires activating protease-activated receptor-2 (PAR2), a G-protein-coupled receptor.

View Article and Find Full Text PDF

We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue-nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis, but that their chondrocyte-derived and osteoblast-derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1-mediated intravesicular generation of inorganic phosphate (Pi ) and phosphate transporter-mediated influx of Pi .

View Article and Find Full Text PDF

Hypophosphatasia (HPP) results from ALPL gene mutations, which lead to a deficiency of tissue-nonspecific alkaline phosphatase (TNAP), and accumulation of inorganic pyrophosphate, a potent inhibitor of mineralization that is also a natural substrate of TNAP, in the extracellular space. HPP causes mineralization disorders including soft bones (rickets or osteomalacia) and defects in teeth and periodontal tissues. Enzyme replacement therapy using mineral-targeting recombinant TNAP has proven effective in preventing skeletal and dental defects in TNAP knockout (Alpl(-/-)) mice, a model for life-threatening HPP.

View Article and Find Full Text PDF

Medial vascular calcification (MVC) is a pathological phenomenon that causes vascular stiffening and can lead to heart failure; it is common to a variety of conditions, including aging, chronic kidney disease, diabetes, obesity, and a variety of rare genetic diseases. These conditions share the common feature of tissue-nonspecific alkaline phosphatase (TNAP) upregulation in the vasculature. To evaluate the role of TNAP in MVC, we developed a mouse model that overexpresses human TNAP in vascular smooth muscle cells in an X-linked manner.

View Article and Find Full Text PDF

Agonists of mouse STING (TMEM173) shrink and even cure solid tumors by activating innate immunity; human STING (hSTING) agonists are needed to test this therapeutic hypothesis in humans. The endogenous STING agonist is 2'3'-cGAMP, a second messenger that signals the presence of cytosolic double-stranded DNA. We report activity-guided partial purification and identification of ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) to be the dominant 2'3'-cGAMP hydrolyzing activity in cultured cells.

View Article and Find Full Text PDF

The morphology of bones is genetically determined, but the molecular mechanisms that control shape, size and the overall gestalt of bones remain unclear. We previously showed that metacarpals in the synpolydactyly homolog (spdh) mouse, which carries a mutation in Hoxd13 similar to the human condition synpolydactyly (SPD), were transformed to carpal-like bones with cuboid shape that lack cortical bone and a perichondrium and are surrounded by a joint surface. Here we provide evidence that spdh metacarpal growth plates have a defect in cell polarization with a random instead of linear orientation.

View Article and Find Full Text PDF

Mandible shape in the mouse is a complex trait that is influenced by many genetic factors. However, little is known about the action of single genes on adult mandible shape so far, since most developmentally relevant genes are already required during embryogenesis, i.e.

View Article and Find Full Text PDF

The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e.

View Article and Find Full Text PDF

Signaling output of bone morphogenetic proteins (BMPs) is determined by two sets of opposing interactions, one with heterotetrameric complexes of cell surface receptors, the other with secreted antagonists that act as ligand traps. We identified two mutations (N445K,T) in patients with multiple synostosis syndrome (SYM1) in the BMP-related ligand GDF5. Functional studies of both mutants in chicken micromass culture demonstrated a gain of function caused by a resistance to the BMP-inhibitor NOGGIN and an altered signaling effect.

View Article and Find Full Text PDF

Individuals with the birth defect synpolydactyly (SPD) have 1 or more digit duplicated and 2 or more digits fused together. One form of SPD is caused by polyalanine expansions in homeobox d13 (Hoxd13). Here we have used the naturally occurring mouse mutant that has the same mutation, the SPD homolog (Spdh) allele, and a similar phenotype, to investigate the molecular pathogenesis of SPD.

View Article and Find Full Text PDF