Publications by authors named "Pia Irene Anna Rossi"

The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways.

View Article and Find Full Text PDF

Glutamate-mediated excitotoxicity plays a major role in ALS and reduced astrocytic glutamate transport was suggested as a cause. Based on previous work we have proposed that abnormal release may represent another source of excessive glutamate. In this line, here we studied the modulation of glutamate release in ALS by Group I metabotropic glutamate (mGlu) receptors, that comprise mGlu1 and mGlu5 members.

View Article and Find Full Text PDF

The impact of Regulated upon Activation Normal T cells Expressed and Secreted (RANTES) on the release of pre-loaded [³H]D-aspartate ([³H]D-ASP) from mouse spinal cord synaptosomes was investigated. RANTES (0.01-1 nM) failed to affect the spontaneous release, but facilitated the 15 mM K⁺-evoked overflow of [³H]D-ASP.

View Article and Find Full Text PDF

The metabotropic glutamate (mGlu) receptor 1 (GRM1) has been shown to play an important role in neuronal cells by triggering, through calcium release from intracellular stores, various signaling pathways that finally modulate neuron excitability, synaptic plasticity, and mechanisms of feedback regulation of neurotransmitter release. Herein, we show that Grm1 is expressed in glomerular podocytes and that a glomerular phenotype is exhibited by Grm1(crv4) mice carrying a spontaneous recessive inactivating mutation of the gene. Homozygous Grm1(crv4/crv4) and, to a lesser extent, heterozygous mice show albuminuria, podocyte foot process effacement, and reduced levels of nephrin and other proteins known to contribute to the maintenance of podocyte cell structure.

View Article and Find Full Text PDF

The metabotropic glutamate (mGlu) 1 receptor, coded by the GRM1 gene, is involved in synaptic activities, learning and neuroprotection. Eleven different mouse Grm1 mutations, either induced or spontaneously occurring, have been reported, including one from our group. All the mutations result in a complex phenotype with ataxia and intention tremor in mice.

View Article and Find Full Text PDF