Publications by authors named "Pia Hoellerbauer"

Glioblastoma (GBM) is the most common and aggressive brain tumor in adults. To identify genes differentially required for the viability of GBM stem-like cells (GSCs), we performed functional genomic lethality screens comparing GSCs and control human neural stem cells. Among top-scoring hits in a subset of GBM cells was the F-box-containing gene , which was also predicted to be essential in ∼15% of cell lines derived from a broad range of cancers.

View Article and Find Full Text PDF

The oxidative tricarboxylic acid (TCA) cycle is a central mitochondrial pathway integrating catabolic conversions of NAD +to NADH and anabolic production of aspartate, a key amino acid for cell proliferation. Several TCA cycle components are implicated in tumorigenesis, including loss-of-function mutations in subunits of succinate dehydrogenase (SDH), also known as complex II of the electron transport chain (ETC), but mechanistic understanding of how proliferating cells tolerate the metabolic defects of SDH loss is still lacking. Here, we identify that SDH supports human cell proliferation through aspartate synthesis but, unlike other ETC impairments, the effects of SDH inhibition are not ameliorated by electron acceptor supplementation.

View Article and Find Full Text PDF

Background: Adult and pediatric tumors display stark differences in their mutation spectra and chromosome alterations. Here, we attempted to identify common and unique gene dependencies and their associated biomarkers among adult and pediatric tumor isolates using functional genetic lethal screens and computational modeling.

Methods: We performed CRISRP-Cas9 lethality screens in two adult glioblastoma (GBM) tumor isolates and five pediatric brain tumor isolates representing atypical teratoid rhabdoid tumors (ATRT), diffuse intrinsic pontine glioma, GBM, and medulloblastoma.

View Article and Find Full Text PDF

Aneuploidy, the incorrect number of whole chromosomes, is a common feature of tumors that contributes to their initiation and evolution. Preventing aneuploidy requires properly functioning kinetochores, which are large protein complexes assembled on centromeric DNA that link mitotic chromosomes to dynamic spindle microtubules and facilitate chromosome segregation. The kinetochore leverages at least two mechanisms to prevent aneuploidy: error correction and the spindle assembly checkpoint (SAC).

View Article and Find Full Text PDF

Single-cell RNA sequencing has emerged as a powerful tool for resolving cellular states associated with normal and maligned developmental processes. Here, we used scRNA-seq to examine the cell cycle states of expanding human neural stem cells (hNSCs). From these data, we constructed a cell cycle classifier that identifies traditional cell cycle phases and a putative quiescent-like state in neuroepithelial-derived cell types during mammalian neurogenesis and in gliomas.

View Article and Find Full Text PDF

CRISPR-Cas9-based technologies have revolutionized experimental manipulation of mammalian genomes. However, limitations regarding the delivery and efficacy of these technologies restrict their application in primary cells. This article describes a protocol for penetrant, reproducible, and fast CRISPR-Cas9 genome editing in cell cultures derived from primary cells.

View Article and Find Full Text PDF

Background: CRISPR-Cas9-based technologies have revolutionized experimental manipulation of mammalian genomes. None-the-less, limitations of the delivery and efficacy of these technologies restrict their application in primary cells.

Aims: To create an optimized protocol for penetrant, reproducible, and fast targeted genome editing in cell cultures derived from primary cells, using patient-derived glioblastoma stem-like cells (GSCs) and human neural stem/progenitor cells (NSCs) for proof-of-concept experiments.

View Article and Find Full Text PDF

YAP1 is a transcriptional coactivator and the principal effector of the Hippo signaling pathway, which is causally implicated in human cancer. Several gene fusions have been identified in various human cancers and identifying the essential components of this family of gene fusions has significant therapeutic value. Here, we show that the gene fusions , , , and are oncogenic in mice.

View Article and Find Full Text PDF
Article Synopsis
  • Recent scientific research reveals abnormal splicing patterns and new gene fusions related to neurotrophic tyrosine receptor kinases (NTRKs) in brain tumors called gliomas.
  • *The study focuses on the truncated NTRK2 splice variant, TrkB.T1, which plays a significant role in the development and progression of gliomas by enhancing signaling pathways involved in tumor growth.
  • *These findings emphasize the need to study splice variants alongside whole genes and gene fusions in neuro-oncology research to better understand brain cancer mechanisms.
View Article and Find Full Text PDF

The Fbw7 (F-box/WD repeat-containing protein 7) ubiquitin ligase targets multiple oncoproteins for degradation and is commonly mutated in cancers. Like other pleiotropic tumor suppressors, Fbw7's complex biology has impeded our understanding of how Fbw7 mutations promote tumorigenesis and hindered the development of targeted therapies. To address these needs, we employed a transfer learning approach to derive gene-expression signatures from The Cancer Gene Atlas datasets that predict Fbw7 mutational status across tumor types and identified the pathways enriched within these signatures.

View Article and Find Full Text PDF

Deregulation of microRNAs' expression frequently occurs in acute myeloid leukemia (AML). Lower miR-181a expression is associated with worse outcomes, but the exact mechanisms by which miR-181a mediates this effect remain elusive. Aberrant activation of the RAS pathway contributes to myeloid leukemogenesis.

View Article and Find Full Text PDF

To identify therapeutic targets for glioblastoma (GBM), we performed genome-wide CRISPR-Cas9 knockout (KO) screens in patient-derived GBM stem-like cells (GSCs) and human neural stem/progenitors (NSCs), non-neoplastic stem cell controls, for genes required for their in vitro growth. Surprisingly, the vast majority GSC-lethal hits were found outside of molecular networks commonly altered in GBM and GSCs (e.g.

View Article and Find Full Text PDF

Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis.

View Article and Find Full Text PDF

Purpose: miR-29b directly or indirectly targets genes involved in acute myeloid leukemia (AML), namely, DNMTs, CDK6, SP1, KIT, and FLT3. Higher miR-29b pretreatment expression is associated with improved response to decitabine and better outcome in AML. Thus, designing a strategy to increase miR-29b levels in AML blasts may be of therapeutic value.

View Article and Find Full Text PDF

The inv(16)(p13q22)/t(16;16)(p13;q22) in acute myeloid leukemia results in multiple CBFB-MYH11 fusion transcripts, with type A being most frequent. The biologic and prognostic implications of different fusions are unclear. We analyzed CBFB-MYH11 fusion types in 208 inv(16)/t(16;16) patients with de novo disease, and compared clinical and cytogenetic features and the KIT mutation status between type A (n = 182; 87%) and non-type A (n = 26; 13%) patients.

View Article and Find Full Text PDF

Retroviruses must integrate their cDNA to a host chromosome, but a significant fraction of retroviral cDNA is degraded before integration. XPB and XPD are part of the TFIIH complex which mediates basal transcription and DNA nucleotide excision repair. Retroviral infection increases when XPB or XPD are mutant.

View Article and Find Full Text PDF