Therapeutic antibodies used in the treatment of cancer patients are able to mediate diverse effector mechanisms. Dependent on tumor entity, localization, and tumor burden different effector mechanisms may contribute to the in vivo antitumor activity to a variable degree. Especially Fc-mediated effector functions such as antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) have been suggested as being important for the in vivo activity of therapeutic antibodies like rituximab or trastuzumab.
View Article and Find Full Text PDFAntibody-dependent cell-mediated cytotoxicity (ADCC) has been suggested as an essential mechanism for the in vivo activity of cetuximab, an epidermal growth factor receptor (EGFR)-targeting therapeutic antibody. Thus, enhancing the affinity of human IgG1 antibodies to natural killer (NK) cell-expressed FcγRIIIa by glyco- or protein-engineering of their Fc portion has been demonstrated to improve NK cell-mediated ADCC and to represent a promising strategy to improve antibody therapy. However, human polymorphonuclear (PMN) effector cells express the highly homologous FcγRIIIb isoform, which is described to be ineffective in triggering ADCC.
View Article and Find Full Text PDFBackground: Antibody (Ab)-dependent cellular cytotoxicity (ADCC) is considered to be a relevant mechanism of action of Ab-based tumor therapies. However, knowledge about ADCC capacity of dialysis patients (DP) is limited. The aim of our study was to investigate if ADCC capacity of effector cells obtained from DP differed from those of healthy individuals (HI).
View Article and Find Full Text PDFProtein- or glyco-engineering of antibody molecules can be used to enhance Fc-mediated effector functions. ScFv-Fc fusion proteins (scFv-Fc) represent interesting antibody derivatives due to their relatively simple design and increased tissue penetration. Here, the impact of protein- and glyco-engineering on ADCC potency of a panel of human IgG1-based scFv-Fc was tested.
View Article and Find Full Text PDF