Publications by authors named "Pi-Ming Zhao"

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin.

View Article and Find Full Text PDF

Verticillium wilt of cotton is a vascular disease mainly caused by the soil-born filamentous fungus Verticillium dahliae. To study the mechanisms associated with defense responses in wilt-resistant sea-island cotton (Gossypium barbadense) upon V. dahliae infection, a comparative proteomic analysis between infected and mock-inoculated roots of G.

View Article and Find Full Text PDF

Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations.

View Article and Find Full Text PDF

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins.

View Article and Find Full Text PDF

Cotton fibre is the most important natural fibres for textile industry. To date, the mechanism that governs the development of fibre traits is largely unknown. In this study, we have characterized the function of a member of the actin depolymerizing factor (ADF) family in Gossypium hirsutum by down-regulation of the gene (designated as GhADF1) expression in the transgenic cotton plants.

View Article and Find Full Text PDF

The CBL/CIPK signaling system mediates a variety of responses to environmental stimuli in plants. In this work, we identified four CBL genes from Gossypium hirsutum, two of which (designated GhCBL2 and GhCBL3) showed preferential expression in the elongating fiber cells. Moreover, the expression patterns of these two CBL genes coincided with that of a putative CBL-interacting protein kinase gene (GhCIPK1) that we isolated in a previous study.

View Article and Find Full Text PDF